
DSP HDL Toolbox™
Reference

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

DSP HDL Toolbox™ Reference
© COPYRIGHT 2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2022 Online only New for Version 1.0 (Release 2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

System Objects
2

iii

Contents

Blocks

1

CIC Interpolator
Interpolate signal using CIC filter
Library: DSP HDL Toolbox / Filtering

Description
The CIC Interpolator block interpolates an input signal by using a cascaded integrator-comb (CIC)
interpolation filter. CIC interpolation filters are a class of linear phase finite impulse response (FIR)
filters consisting of a comb part and an integrator part. The CIC interpolation filter structure consists
of N sections of cascaded comb filters, a rate change factor of R, and N sections of cascaded
integrators. For more information about CIC interpolation filters, see “Algorithms” on page 1-7.

The block supports these combinations of input and output data.

• Scalar input and scalar output — Support for fixed and variable interpolation rates
• Scalar input and vector output — Support for fixed interpolation rates only
• Vector input and vector output — Support for fixed interpolation rates only

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length from 1 to 64.

The input data must be a signed integer or signed fixed point with a word length less than or equal to
32.
Data Types: int8 | int16 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

R — Variable interpolation rate
scalar

1 Blocks

1-2

Use this port to dynamically specify the variable interpolation rate during run time.

This value must have the data type fixdt(0,12,0) and must be an integer in the range from 1 to
the Interpolation factor (Rmax) parameter value.

Dependencies

To enable this port, on the Main tab, set the Interpolation factor source parameter to Input
port.
Data Types: fixdt(0,12,0)

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — CIC-interpolated output data
scalar | column vector

CIC-interpolated output data, returned as a scalar or a column vector with a length from 1 to 64. You
can define the data type of this output by setting the Output data type parameter on the Data
Types tab.
Data Types: int8 | int16 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.
Data Types: Boolean

 CIC Interpolator

1-3

Parameters
Main

Interpolation factor source — Source of interpolation factor
Property (default) | Input port

Select whether the block operates with a fixed or variable interpolation rate.

• Property — Use a fixed interpolation rate specified from the Interpolation factor (R)
parameter.

• Input port — Use a variable interpolation rate specified from the R input port.

Note The block does not support variable interpolation for these two combinations of input and
output:

• Scalar input and vector output
• Vector input and vector output

Interpolation factor (R) — Interpolation factor
2 (default) | integer from 1 to 2048

Specify the interpolation factor rate at which the block interpolates the input. This value must be an
integer. The range of available values depends on the type of input and output data.

Input Data Output Data Interpolation factor (R) Valid Values
Scalar Scalar Integer from 1 to 2048
Scalar Vector Integer from 1 to 64
Vector Vector Integer from 1 to 64

Note For vector inputs, select the interpolation factor rate and input vector length such that their
multiplication value does not exceed 64.

Dependencies

To enable this parameter, set the Interpolation factor source parameter to Property.

Interpolation factor (Rmax) — Upper bound of variable interpolation factor
2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input port.

Note The block does not support variable interpolation for these two combinations of input and
output:

• Scalar input and vector output
• Vector input and vector output

1 Blocks

1-4

Dependencies

To enable this parameter, set the Interpolation factor source parameter to Input port.

Differential delay (M) — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the block.

Number of sections (N) — Number of integrator and comb sections
2 (default) | 1 | 3 | 4 | 5 | 6

Specify the number of sections in either the comb part or the integrator part of the block.

Minimum number of cycles between valid input samples — Minimum number of cycles
between valid input samples
1 (default) | factors or multiples of R

Specify the minimum number of cycles between the valid input samples as 1, factors of R, or
multiples of R based on the type of input and output data, where R is the interpolation factor.

Input Data Output Data Minimum Number of Cycles Between
Valid Input Samples

Scalar Scalar greater than or equal to R
Scalar Vector factors less than R
Vector Vector 1

Dependencies

To enable this parameter, set the Interpolation factor source parameter to Property.

Gain correction — Output gain compensation
off (default) | on

Select this parameter to compensate for the output gain of the block.

The latency of the block changes depending on the type of input, the interpolation you specify, the
number of sections, and the value of this parameter. For more information on the latency of the block,
see “Latency” on page 1-9.

Data Types

Output data type — Data type of output
Full precision (default) | Same word length as input | Minimum section word lengths

Select the data type for the output data.

• Full precision — The output data type has a word length equal to the input word length plus
gain bits.

• Same word length as input — The output data type has a word length equal to the input
word length.

• Minimum section word lengths — The output data type uses the word length you specify in
the Output word length parameter.

 CIC Interpolator

1-5

Output word length — Word length of output
16 (default) | integer from 2 to 104

Specify the word length of the output as an integer from 2 to 104.

Dependencies

To enable this parameter, set the Output data type parameter to Minimum section word
lengths.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 1-6.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink®. When you clear this parameter, the generated HDL global reset clears only the control
path registers. The generated HDL global reset can be synchronous or asynchronous depending on
the HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see “Tips” on page 1-6.

Tips
Reset Behavior

• By default, the CIC Interpolator block connects the generated HDL global reset to only the control
path registers. The two reset parameters, Enable reset input port and Use HDL global reset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

• The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA
resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

• When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

1 Blocks

1-6

Reset Considerations for Generated Test Benches

• FPGA-in-the-loop (FIL) initialization provides a global reset but does not automatically provide a
local reset. With the default reset parameters, the data path registers that are not reset can result
in FIL mismatches if you run the FIL model more than once without resetting the board. Select
Use HDL global reset to reset the data path registers automatically, or select Enable reset
input port and assert the local reset in your model so the reset signal becomes part of the
Simulink FIL test bench.

• The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

Algorithms
CIC Interpolation Filter

The transfer function of a CIC interpolation filter is

H(z) = ∑
k = 0

RM − 1
z−k

N
= (1− z−RM)N

(1− z−1)N = (1− z−RM)N

1 · 1
(1− z−1)N = HCN(z) · HIN(z) .

• HC is the transfer function of the comb part of the CIC filter.
• HI is the transfer function of the integrator part of the CIC filter.
• N is the number of sections in either the comb part or integrator part of the filter. This value does

not represent the total number of sections throughout the entire filter.
• R is the interpolation factor.
• M is the differential delay.

CIC Filter Structure

The CIC Interpolator block has the CIC filter structure shown in this figure. The structure consists of
N sections of cascaded comb filters, a rate change factor of R, and N sections of cascaded integrators
[1].

You can locate the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the block.
Because this configuration is preferred for HDL implementation, this block puts the unit delay in the
feedforward path of the integrator.

 CIC Interpolator

1-7

Fixed and Variable Interpolation

The block upsamples the comb stage output using R, either using the fixed interpolation rate
provided using the Interpolation factor (R) parameter or the variable interpolation rate provided
using the R input port. At the upsampling stage, the block uses a counter to count the valid input
samples, which depend on the interpolation rate. Whenever the interpolation rate changes, the block
resets and starts a new calculation from the next sample. This mechanism prevents the block from
accumulating false values. Then, the block provides the interpolated output to the integrator part of
the CIC filter.

Gain Correction

The gain of the CIC interpolation filter at each stage is given by

Gi =
2i i = 1, 2, ..., N

22N − i RM i− N

R i = N + 1, ..., 2N
.

• Gi is the gain at ith stage.
• R is the Interpolation factor (R) parameter value.
• M is the Differential delay (M) parameter value.
• N is the Number of sections (N) parameter value.

The output of the block is amplified by a specific gain value. This gain equals the gain of the 2Nth

stage of the CIC interpolation filter and is given by Gain = (R x M)N

R .

The block implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the block calculates the shift value, adds the shift value to the fractional bits to create a
numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the block
divides the remaining gain with the coarse gain if the gain is not a power of 2. Then, the block
multiplies the corrected coarse gain value by the inverse value of the fine gain. Before the block
starts processing, all possible shift and fine gain values are precalculated and stored in an array.

You can modify this equation to Gain = 2cGain x fGain. In this equation, cGain is the coarse gain and
fGain is the fine gain. These gains are given by these equations.

• cGain = f loor(log2Gain)

• fGain = Gain/2cGain = Gain x 2−cGain

To perform gain correction when the Interpolation factor source parameter is set to Input port,
the block sets the output data type configured with the maximum interpolation rate and bit-shifts left
for all of the values under the maximum interpolation rate. The bit-shift value is equal to
Maximum gain − log2(current gain).

Output Data Type

The block outputs data based on the output data type selection. Consider a block with R, M, and N
values of 8, 1, and 3, respectively, and an input width of 16. The word length at the ith internal stage
is calculated as Bi = BIn + [log2(Gi)], where:

1 Blocks

1-8

• Gi is the gain at ith stage.
• BIn is the input word length.
• Bi is the word length at ith stage.

The output word length is calculated as BOut = BIn + N − 1, where BOut is the output word length.

When you set the Output data type parameter to Full precision, the block outputs data with a
word length of 22 by adding 6 gain bits to the input word length of 16. The word lengths of the
internal comb and integrator stages are set to accommodate the bit growth.

When you set the Output data type parameter to Same word length as input, the block
outputs data with a word length of 16, which is the same length as the input word length. The word
lengths of the internal comb and integrator stages are set in the same way as in Full precision
mode.

When you set the Output data type parameter to Minimum section word lengths and the
Output word length parameter to 16, the block outputs data with a word length of 16. The word
lengths of the internal comb and integrator stages are set in the same way as in Full precision
mode.

Latency

The latency of the block changes depending on the type of input, the interpolation you specify, the
number of sections, the value of the Gain correction parameter, and the value of the Minimum
number of cycles between valid input samples parameter. This table shows the latency of the
block. N is the number of sections, vecLen is the length of the vector, and R is the interpolation factor.

 CIC Interpolator

1-9

Common latency is equal to 2 + (N x (vecLen x R)) + 3 x N, when R is equal to 1 and is equal to 3 +
(N x (vecLen x R)) + 3 x N, when R is greater than 1.

Input
Data

Output
Data

Interpolat
ion Type

Gain
Correctio
n

Minimum
number
of cycles
between
valid
input
samples
(NumCyc
les)

Latency in Clock Cycles

Scalar Scalar Fixed off NumCycle
s = R and
> R

3 + N

2 + N, when R = 1.
on NumCycle

s = R and
> R

3 + N + 9

2 + N + 9, when R = 1.
Scalar Scalar Variable off NA 4 + N

3 + N, when Rmax = 1.
on NA 4 + N + 9

3 + N + 9, when Rmax = 1.
Scalar Vector Fixed off NumCycle

s = 1
Common latency + 1, when R is greater than N.

Common latency, when R is less than or equal to N.

Common latency – (1 + floor(N/(3 x R))), when R is
less than N and (vecLen == 2 && (R == 2 && (N
== 4 || N == 5 || N == 6)) || (R== 3 && N == 6))

NumCycle
s < R

3 + N + ((R + 1) x N + 2) + 1 + (N – 1) x
NumCycles.

on NumCycle
s = 1

Common latency + 1 + 9, when R is greater than N.

Common latency + 9, when R is less than or equal to
N.

Common latency – (1 + floor(N/(3 x R))) + 9, when R
is less than N and (vecLen == 2 && (R == 2 && (N
== 4 || N == 5 || N == 6)) || (R == 3 && N == 6)).

NumCycle
s < R

3 + N + ((R + 1) x N + 2) + 1 + (N – 1) x
NumCycles + 9

1 Blocks

1-10

Input
Data

Output
Data

Interpolat
ion Type

Gain
Correctio
n

Minimum
number
of cycles
between
valid
input
samples
(NumCyc
les)

Latency in Clock Cycles

Vector Vector Fixed off NumCycle
s = 1

Common latency

Common latency – 1, when (vecLen == 2 && (R ==
2 && (N == 4 || N == 5 || N == 6)) || (R== 3 && N
== 6)) || (vecLen == 3 && (R == 2 && N == 6))

Common latency – ((N >1) + (N > 4)), when R = 1
and vecLen == 2.

Common latency – ((N > (vecLen – 1)), when R = 1
and vecLen > 2.

on NumCycle
s = 1

Common latency + 9

Common latency – 1 + 9, when (vecLen == 2 && (R
== 2 && (N == 4 || N == 5 || N == 6)) || (R== 3
&& N == 6)) || (vecLen == 3 && (R == 2 && N ==
6))

Common latency – ((N >1) + (N > 4)) + 9, when R =
1 and vecLen == 2.

Common latency – ((N > (vecLen – 1)) + 9, when R
= 1 and vecLen > 2.

Note The block does not support variable interpolation for these two combinations of input and
output:

• Scalar input and vector output
• Vector input and vector output

Scalar Input

This section shows the output of the block for a scalar input with different R, M, and N values.

This figure shows the output of the block with the default configuration (that is, with a fixed
interpolation rate and R, M, and N values of 2, 1, and 2, respectively). The latency of the block is 5
clock cycles and is calculated as 3 + N, where N is the number of sections.

 CIC Interpolator

1-11

This figure shows the output of the block with a fixed interpolation rate, R, M, and N values of 8, 1,
and 3, respectively, and the Gain correction parameter selected. The latency of the block is 15 clock
cycles and is calculated as 3 + N + 9, where N is the number of sections.

This figure shows the output of the block with variable interpolation rate (R input port) values of 2, 4,
and 8 and with M and N values of 1 and 3, respectively. In this case, the Gain correction parameter
is cleared. The block accepts R port value changes only when the valid input port is 1. The latency of
the block is 7 clock cycles and is calculated as 4 + N, where N is the number of sections.

Vector Input

This section shows the output of the block for a vector input with different R, M, and N values.

This figure shows the output of the block for a two-element column vector input with the default
configuration (that is, with a fixed interpolation rate and R, M, and N values of 2, 1, and 2,
respectively). The latency of the block is 17 clock cycles.

1 Blocks

1-12

This figure shows the output of the block for an eight-element column vector input with a fixed
interpolation rate, R, M, and N values of 8, 1, and 3, respectively, and the Gain correction
parameter selected. The latency of the block is 213 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results of the block for a scalar input
with fixed and variable interpolation rates and for a two-element column vector of type
fixdt(1,16,0) with a fixed interpolation rate when R, M, and N are 2, 1, and 2, respectively. The
generated HDL code is targeted to the Xilinx® Zynq®- 7000 ZC706 Evaluation Board.

Input Data Interpolation Type Slice LUTs Slice Registers Maximum Frequency in
MHz

Scalar Fixed rate 68 90 844.12
Variable rate 143 115 451.83

Vector Fixed rate 480 921 376.51

The resources and frequencies vary based on the type of input data, R, M, and N values, and other
parameter values selected in the block mask. Using a vector input can increase the throughput,
however, doing so also increases the number of hardware resources that the block uses.

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155–62.
https://doi.org/10.1109/TASSP.1981.1163535.

 CIC Interpolator

1-13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Objects
dsphdl.CICInterpolator | dsphdl.CICDecimator

Blocks
CIC Decimator

Introduced in R2022a

1 Blocks

1-14

CIC Decimator
Decimate signal using CIC filter
Library: DSP HDL Toolbox / Filtering

Description
The CIC Decimator block decimates an input signal by using a cascaded integrator-comb (CIC)
decimation filter. CIC decimation filters are a class of linear phase finite impulse response (FIR) filters
consisting of a comb part and an integrator part. The CIC decimation filter structure consists of N
sections of cascaded integrators, a rate change factor of R, and N sections of cascaded comb filters.
For more information about CIC decimation filters, see “Algorithms” on page 1-19.

The block supports these combinations of input and output data.

• Scalar input and scalar output — Support for fixed and variable decimation rates
• Vector input and scalar output — Support for fixed decimation rates only
• Vector input and vector output — Support for fixed decimation rates only

The block provides an architecture suitable for HDL code generation and hardware deployment.

Ports
Input

data — Input data
scalar | column vector

Input data, specified as a scalar or a column vector with a length from 1 to 64. The input data must
be a signed integer or a signed fixed point with a word length less than or equal to 32. The
Decimation factor (R) parameter must be an integer multiple of the input frame size.
Data Types: int8 | int16 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

R — Variable decimation rate
scalar

 CIC Decimator

1-15

Use this port to dynamically specify the variable decimation rate during run time.

This value must have the data type fixdt(0,12,0) and it must be an integer in the range from 1 to
the Decimation factor (Rmax) parameter value.

Dependencies

To enable this port, on the Main tab, set the Decimation factor source parameter to Input port.
Data Types: fixdt(0,12,0)

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — CIC-decimated output data
scalar | column vector

The block returns filtered output data as a scalar or a column vector with a length from 1 to 64. You
can define the data type of this output by setting the Output data type parameter on the Data
Types tab.
Data Types: int8 | int16 | int32 | signed fixed point
Complex Number Support: Yes

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

Parameters
Main

Decimation factor source — Source of decimation factor
Property (default) | Input port

Select whether the block operates with a fixed or variable decimation rate.

1 Blocks

1-16

• Property — Use a fixed decimation rate specified from the Decimation factor (R) parameter.
• Input port — Use a variable decimation rate specified from the R input port.

Note For vector inputs, the block does not support variable decimation.

Decimation factor (R) — Decimation factor
2 (default) | integer from 1 to 2048

Specify the decimation factor rate at which the block decimates the input.
Dependencies

To enable this parameter, set the Decimation factor source parameter to Property.

Decimation factor (Rmax) — Upper bound of variable decimation factor
2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input port.

Note For vector inputs, the block does not support variable decimation.

Dependencies

To enable this parameter, set the Decimation factor source parameter to Input port.

Differential delay (M) — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the block.

Number of sections (N) — Number of integrator and comb sections
2 (default) | 1 | 3 | 4 | 5 | 6

Specify the number of sections in either the comb part or the integrator part of the block.

Gain correction — Output gain compensation
off (default) | on

Select this parameter to compensate for the output gain of the block.

The latency of the block changes depending on the type of input, the decimation you specify, the
number of sections, and the value of this parameter. For more information on the latency of the block,
see “Latency” on page 1-22.

Data Types

Output data type — Data type of output
Full precision (default) | Same word length as input | Minimum section word lengths

Select the data type for the output data.

• Full precision — The output data type has a word length equal to the input word length plus
gain bits.

 CIC Decimator

1-17

• Same word length as input — The output data type has a word length equal to the input
word length.

• Minimum section word lengths — The output data type uses the word length you specify in
the Output word length parameter. When you select this option, the block applies the pruning
algorithm. For more information about the pruning algorithm, see [1].

Output word length — Word length of output
16 (default) | integer from 2 to 104

Specify the word length of the output.

Note When this value is 2, 3, 4, 5, or 6, the block can overflow the output data.

Dependencies

To enable this parameter, set the Output data type parameter to Minimum section word
lengths.

Control Ports

Enable reset input port — Reset signal
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see “Tips” on page 1-18.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see “Tips” on page 1-18.

Tips
Reset Behavior

• By default, the CIC Decimator block connects the generated HDL global reset to only the control
path registers. The two reset parameters, Enable reset input port and Use HDL global reset,
connect a reset signal to the data path registers. Because of the additional routing and loading on
the reset signal, resetting data path registers can reduce synthesis performance.

• The Enable reset input port parameter enables the reset port on the block. The reset signal
implements a local synchronous reset of the data path registers. For optimal use of FPGA

1 Blocks

1-18

resources, this option does not connect the reset signal to registers targeted to the DSP blocks of
the FPGA.

• The Use HDL global reset parameter connects the generated HDL global reset signal to the data
path registers. This parameter does not change the appearance of the block or modify simulation
behavior in Simulink. The generated HDL global reset can be synchronous or asynchronous
depending on the HDL Code Generation > Global Settings > Reset type parameter in the
model Configuration Parameters. Depending on your device, using the global reset might move
registers out of the DSP blocks and increase resource use.

• When you select the Enable reset input port and Use HDL global reset parameters together,
the global and local reset signals clear the control and data path registers.

Reset Considerations for Generated Test Benches

• FPGA-in-the-loop (FIL) initialization provides a global reset but does not automatically provide a
local reset. With the default reset parameters, the data path registers that are not reset can result
in FIL mismatches if you run the FIL model more than once without resetting the board. Select
Use HDL global reset to reset the data path registers automatically, or select Enable reset
input port and assert the local reset in your model so the reset signal becomes part of the
Simulink FIL test bench.

• The generated HDL test bench provides a global reset but does not automatically provide a local
reset. With the default reset parameters and the default register reset Configuration Parameters,
the generated HDL code includes an initial simulation value for the data path registers. However,
if you are concerned about X-propagation in your design, you can set the HDL Code Generation
> Global Settings > Coding style > No-reset register initialization parameter in
Configuration Parameters to Do not initialize. In this case, with the default block reset
parameters, the data path registers that are not reset can cause X-propagation on the data path at
the start of HDL simulation. Select Use HDL global reset to reset the data path registers
automatically, or select Enable reset input port and assert the local reset in your model so the
reset signal becomes part of the generated HDL test bench.

Algorithms
CIC Decimation Filter

The transfer function of a CIC decimation filter is

H(z) = ∑
k = 0

RM − 1
z−k

N
=

1− z−RM N

1− z−1 N = 1
1− z−1 N ·

1− z−RM N

1 = HIN(z) · HcN(z) .

• HI is the transfer function of the integrator part of the CIC filter.
• HC is the transfer function of the comb part of the CIC filter.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or integrator part of the filter. This value does not represent the
total number of sections throughout the entire filter.

• R is the decimation factor.
• M is the differential delay.

 CIC Decimator

1-19

CIC Filter Structure

The CIC Decimator block has the CIC filter structure shown in this figure. The structure consists of N
sections of cascaded integrators, a rate change factor of R, and N sections of cascaded comb filters
[1].

You can locate the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the block.
Because this configuration is preferred for HDL implementation, this block puts the unit delay in the
feedforward path of the integrator.

Fixed and Variable Decimation

The block downsamples the integrator stage output using R, either based on the fixed decimation rate
provided using the Decimation factor (R) parameter or the variable decimation rate provided using
the R input port. At the downsampler stage, the block uses a counter to count the valid input
samples, which depend on the decimation rate. Whenever the decimation rate changes, the block
resets and starts a new calculation from the next sample. This mechanism prevents the block from
accumulating false values. Then, the block provides the decimated output to the comb part of the CIC
filter.

Gain Correction

The gain of the block is given by Gain = (R x M)N.

• R is the Decimation factor (R) parameter value.
• M is the Differential delay (M) parameter value.
• N is the Number of sections (N) parameter value.

The block implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the block calculates the shift value, adds the shift value to the fractional bits to create a
numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the block
divides the remaining gain with the coarse gain if the gain is not a power of 2. Then, the block
multiplies the corrected coarse gain corrected value with the inverse value of the fine gain. Before
the block starts processing, all possible shift and fine gain values are precalculated and stored in an
array.

You can modify this equation as Gain = 2cGain x fGain. In this equation, cGain is the coarse gain, and
fGain is the fine gain. These gains are given by these equations.

• cGain = f loor(log2Gain)
• fGain = Gain/2cGain = Gain x 2−cGain

To perform gain correction when the Decimation factor source parameter is set to Input port,
the block sets the output data type configured with the maximum decimation rate and bit-shifts left
for all of the values under the maximum decimation rate. The bit-shift value is equal to
Maximum gain − log2(current gain).

1 Blocks

1-20

Output Data Type

The block outputs data based on the output data type selection. Consider a block with R, M, and N
values of 8, 1, and 3, respectively, and an input width of 16. The output word length is calculated as
BOut = BIn + [log2(Gain)].

• Gain = (R x M)N

• BIn is the input word length.
• BOut is the output word length.

When you set the Output data type parameter to Full precision, the block outputs data with a
word length of 25 by adding 9 gain bits to the input word length of 16.

When you set the Output data type parameter to Same word length as input, the block
outputs data with a word length of 16, which is the same length as the input word length. The
internal integrator and comb stages use the full-precision data type with 25 bits.

When you set the Output data type parameter to Minimum section word lengths and the
Output word length parameter to 16, the block outputs data with a word length of 16. In this case,
the block changes the bit width at each stage, based on the pruning algorithm.

If the Output word length parameter value is less than the number of bits required at the block
output, the least significant bits (LSBs) at the earlier stages are pruned. The Hogenauer algorithm [1]
provides the number of LSBs to discard at each stage. This algorithm minimizes the loss of
information in the output data.

 CIC Decimator

1-21

Latency

The latency of the block changes depending on the type of input, the decimation you specify, the
number of sections, and the value of the Gain correction parameter. This table shows the latency of
the block. N is the number of sections and vecLen is the length of the vector.

Input
Data

Output
Data

Decimation
Type

Gain
Correction

Latency in Clock Cycles

Scalar Scalar Fixed off 3 + N. When R = 1, 2 + N.
on 3 + N + 9. When R = 1, 2 + N + 9.

Scalar Scalar Variable off 4 + N. When Rmax = 1, 3 + N.
on 4 + N + 9. When Rmax = 1, 3 + N + 9.

Vector Scalar Fixed off floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N

on floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N) + 9

Vector Vector Fixed off floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N

on floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N) + 9

Note For vector inputs, the block does not support variable decimation.

Scalar Input

This section shows the output of the block for a scalar input with different R, M, and N values.

This figure shows the output of the block with the default configuration (that is, with a fixed
decimation rate and R, M, and N values of 2, 1, and 2, respectively). The block returns valid output
data at every second cycle based on the fixed Decimation factor (R) parameter value of 2. The
latency of the block is 5 clock cycles and is calculated as 3 + N, where N is the number of sections.

1 Blocks

1-22

This figure shows the output of the block with a fixed decimation rate, R, M, and N values of 8, 1, and
3, respectively, and the Gain correction parameter selected. The block returns valid output data at
every eighth cycle based on the fixed Decimation factor (R) parameter value of 8. The latency of
the block is 15 clock cycles and is calculated as 3 + N + 9, where N is the number of sections.

This figure shows the output of the block with variable decimation rate (R input port) values of 2, 4,
and 8 and with M and N values of 1 and 3, respectively. In this case, the Gain correction parameter
is cleared. The block returns valid output data at the second, fourth, and eighth cycles corresponding
to the R port values 2, 4, and 8, respectively. The block accepts R port value changes only when the
valid input port is 1. The latency of the block is 7 clock cycles and is calculated as 4 + N, where N is
the number of sections.

Vector Input

This section shows the output of the block for a vector input with different R, M, and N values.

This figure shows the output of the block for a two-element column vector input with the default
configuration, (that is, with a fixed decimation rate and R, M, and N values of 2, 1, and 2,
respectively). The latency of the block is 12 clock cycles.

 CIC Decimator

1-23

This figure shows the output of the block for an eight-element column vector input with a fixed
decimation rate, R, M, and N values of 8, 1, and 3, respectively, and the Gain correction parameter
selected. The latency of the block is 44 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results of the block for a scalar input
of type fixdt(1,16,0) with fixed and variable decimation rates and for a two-element column
vector input with a fixed decimation rate when R, M, and N are 2, 1, and 2, respectively. The
generated HDL is targeted to the Xilinx Zynq- 7000 ZC706 Evaluation Board.

Input Data Decimation Type Slice LUTs Slice Registers Maximum Frequency in
MHz

Scalar Fixed rate 101 166 711.74
Variable rate 206 186 441.70

Vector Fixed rate 218 627 624.61

The resources and frequencies vary based on the type of input data and the values of R, M, and N, as
well as other parameter values selected in the block mask. Using a vector input can increase the
throughput, however, doing so also increases the number of hardware resources that the block uses.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named CIC Decimation HDL Optimized, and was included in the DSP
System Toolbox™ DSP System Toolbox HDL Support library.

1 Blocks

1-24

Changes to decimation factor parameters
Behavior changed in R2022a

In previous releases, a decimation factor of 1 was invalid. You can now set the decimation factor to 1.

Configuration Before R2022a After 2022a
Variable decimation factor Select the Variable decimation

parameter and set the
Decimation factor (R)
parameter to the maximum
expected decimation factor.

Set the Decimation factor
source parameter to Input
port and set the Decimation
factor (Rmax) parameter to
the maximum expected
decimation factor. The
decimFactor port is renamed
to R.

Fixed decimation factor Clear the Variable decimation
parameter and set the
Decimation factor (R)
parameter to the desired
decimation factor.

Set the Decimation factor
source parameter to Property
and set the Decimation factor
(R) to the desired decimation
factor.

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155–62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

 CIC Decimator

1-25

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Objects
dsphdl.CICDecimator | dsphdl.CICInterpolator

Blocks
CIC Interpolator

Introduced in R2019b

1 Blocks

1-26

Discrete FIR Filter
Finite impulse response filter
Library: DSP HDL Toolbox / Filtering

Description
The Discrete FIR Filter block models finite-impulse response filter architectures optimized for HDL
code generation. The block accepts scalar or frame-based input, and provides an option for
programmable coefficients. It provides a hardware-friendly interface with input and output control
signals. To provide a cycle-accurate simulation of the generated HDL code, the block models
architectural latency including pipeline registers and resource sharing.

The block provides three filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel® and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation and is suitable for FPGA and ASIC
applications. The partly serial systolic architecture provides a configurable serial implementation that
makes efficient use of FPGA DSP blocks. For a filter implementation that matches multipliers,
pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

All three structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

The latency between valid input data and the corresponding valid output data depends on the filter
structure, serialization options, the number of coefficients, and whether the coefficient values provide
optimization opportunities. For details of structure and latency, see the “Algorithm” on page 1-33
section.

For a FIR filter with multichannel support, use the Discrete FIR Filter block instead.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. The vector size must be a
power of 2 in the range from 1 to 64. When the input data type is an integer type or a fixed-point
type, the block uses fixed-point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

 Discrete FIR Filter

1-27

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

coeff — Filter coefficients
real or complex row vector

Filter coefficients, specified as a row vector of real or complex values. You can change the input
coefficients at any time. The size of the vector depends on the size and symmetry of the sample
coefficients specified in the Coefficients prototype parameter. The prototype specifies a sample
coefficient vector that is representative of the symmetry and zero-valued locations of the expected
input coefficients. The block uses the prototype to optimize the filter by sharing multipliers for
symmetric or antisymmetric coefficients, and removing multipliers for zero-valued coefficients.
Therefore, provide only the nonduplicate coefficients at the port. For example, if you set the
Coefficients prototype parameter to a symmetric 14-tap filter, the block expects a vector of 7 values
on the coeff input port. You must still provide zeros in the input coeff vector for the nonduplicate
zero-valued coefficients.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this port, set Coefficients source to Input port (Parallel interface).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixed point

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean

Output

data — Filtered output data
scalar or column vector of real or complex values

Filtered output data, returned as a scalar or column vector of real or complex values. The dimensions
of the output match the dimensions of the input. When the input data type is a floating-point type, the
output data inherits the data type of the input data. When the input data type is an integer type or a
fixed-point type, the Output parameter on the Data Types tab controls the output data type.

1 Blocks

1-28

Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

When using the partly-serial architecture, the block processes one sample at a time. If your design
waits for this block to return ready set to 0 before setting the input valid to 0 (false), then one
additional cycle of input data arrives at the port. The block stores this additional data while
processing the current data, and then does not set ready to 1 (true), until your model processes the
additional input data.
Dependencies

To enable this port, set Filter structure to Partly serial systolic.
Data Types: Boolean

Parameters
Main

Coefficient source — Source of filter coefficients
Property (default) | Input port (Parallel interface)

You can enter constant filter coefficients as a parameter or provide time-varying filter coefficients
using an input port.

Selecting Input port (Parallel interface) enables the coeff port on the block and the
Coefficients prototype parameter. Specify a prototype to enable the block to optimize the filter
implementation according to the symmetry of your coefficients. To use Input port (Parallel
interface), set the Filter structure parameter to Direct form systolic or Direct form
transposed.

When you use programmable coefficients with frame-based input, the output after a change of
coefficient values may not exactly match the output in the scalar case. This behavior is because, when
the filter is decomposed into subfilters, the filter calculations are done at different times relative to
the input coefficient values, compared with the scalar implementation.

Coefficients — Discrete FIR filter coefficients
[0.5, 0.5] (default) | real or complex vector

Discrete FIR filter coefficients, specified as a vector of real or complex values. You can also specify
the vector as a workspace variable or as a call to a filter design function. When the input data type is

 Discrete FIR Filter

1-29

a floating-point type, the block casts the coefficients to the same data type as the input. When the
input data type is an integer type or a fixed-point type, you can set the data type of the coefficients on
the Data Types tab.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0])

Dependencies

To enable this parameter, set Coefficients source to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Coefficients prototype — Prototype filter coefficients
[] (default) | real or complex vector

Prototype filter coefficients, specified as a vector of real or complex values. The prototype specifies a
sample coefficient vector that is representative of the symmetry and zero-valued locations of the
expected input coefficients. If all of your input coefficient vectors have the same symmetry and zero-
valued coefficient locations, set Coefficients prototype to one of those vectors. If your coefficients
are unknown or not expected to share symmetry or zero-valued locations, set Coefficients
prototype to []. The block uses the prototype to optimize the filter by sharing multipliers for
symmetric or antisymmetric coefficients, and removing multipliers for zero-valued coefficients.

Coefficient optimizations affect the expected size of the vector on the coeff port. Provide only the
nonduplicate coefficients at the port. For example, if you set the Coefficients prototype parameter
to a symmetric 14-tap filter, the block shares one multiplier between each pair of duplicate
coefficients, so the block expects a vector of 7 values on the coeff port. You must still provide zeros in
the input coeff vector for the nonduplicate zero-valued coefficients.

Dependencies

To enable this parameter, set Coefficients source to Input port (Parallel interface).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed | Partly serial systolic

Specify the HDL filter architecture as one of these structures:

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”.

• Partly serial systolic — This architecture provides a serial filter implementation and
options for tradeoffs between throughput and resource utilization. It makes efficient use of Intel
and Xilinx DSP blocks. The block implements a serial L-coefficient filter with M multipliers and
requires input samples that are at least N cycles apart, such that L = N×M. You can specify either
M or N. For this implementation, the block provides an output port, ready, that indicates when
the block is ready for new input data. For architecture details, see “Partly Serial Systolic
Architecture (1 < N < L)” and “Fully Serial Systolic Architecture (N ≥ L)”. You cannot use frame-
based input with the partly-serial architecture.

1 Blocks

1-30

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

Specify serialization factor as — Rule to define serial implementation
Minimum number of cycles between valid input samples (default) | Maximum number of
multipliers

You can specify the rule that the block uses to serialize the filter as either:

• Minimum number of cycles between valid input samples – Specify a requirement for
input data timing using the Number of cycles parameter.

• Maximum number of multipliers – Specify a requirement for resource usage using the
Number of multipliers parameter.

For a filter with L coefficients, the block implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = N×M. The block might
remove multipliers when it applies coefficient optimizations, so the actual M or N value of the filter
implementation can be lower than the value that you specified.

Dependencies

To enable this parameter, set the Filter structure parameter to Partly serial systolic.

Number of cycles — Serialization requirement for input timing
2 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. In this case, the block calculates M =
L/N. To implement a fully-serial architecture, set Number of cycles greater than the filter length, L,
or to Inf.

The block might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter can be lower than the value you specified.

Dependencies

To enable this parameter, set Filter structure to Partly serial systolic and set Specify
serialization factor as to Minimum number of cycles between valid input samples.

Number of multipliers — Serialization requirement for resource usage
2 (default) | positive integer

Serialization requirement for resource usage, specified as a positive integer. This parameter
represents M, the maximum number of multipliers in the filter implementation. In this case, the block
calculates N = L/M. If the input data is complex, the block allocates floor(M/2) multipliers for the
real part of the filter and floor(M/2) multipliers for the imaginary part of the filter. To implement a
fully-serial architecture, set Number of multipliers to 1 for real input with real coefficients, 2 for
complex input and real coefficients or real coefficients with complex input, or 3 for complex input and
complex coefficients.

The block might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter can be lower than the value you specified.

 Discrete FIR Filter

1-31

Dependencies

To enable this parameter, set the Filter structure to Partly serial systolic, and set Specify
serialization factor as to Maximum number of multipliers.

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of discrete FIR filter coefficients
Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.

The block returns a warning or error if:

• The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

• The coefficients data type is unsigned while the coefficients include negative values.

Dependencies

To enable this parameter, set Coefficients source to Property.

Output — Data type of filter output
Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

When you specify a fixed set of coefficients, because the coefficient values limit the potential growth,
usually the actual full-precision internal word length is smaller than WF.

1 Blocks

1-32

When you use programmable coefficients, the block cannot calculate the dynamic range, and the
internal data type is always WF.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Algorithms
The filter architectures for the Discrete FIR Filter block are shared with other blocks and described
in detail on the “FIR Filter Architectures for FPGAs and ASICs” page. The sections here show the
hardware resources and synthesized clock speed for the Discrete FIR Filter block configured with
each filter architecture.

Performance — Fully Parallel Systolic

This table shows post-synthesis resource utilization for the HDL code generated for a symmetric 26-
tap FIR filter with 16-bit input and 16-bit coefficients. The synthesis targets a Xilinx ZC-706
(XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous and Minimize
clock enables is selected. The reset port is not enabled, so only control path registers are connected
to the generated global HDL reset.

Resource Uses
LUT 36
Slice Reg 487
Slice 45
Xilinx LogiCORE DSP48 13

After place and route, the maximum clock frequency of the design is 630 MHz.

 Discrete FIR Filter

1-33

Performance — Fully Parallel Transposed

This table shows post-synthesis resource utilization for the HDL code generated for a symmetric 26-
tap FIR filter with 16-bit input and 16-bit coefficients. The synthesis targets a Xilinx ZC-706
(XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous and Minimize
clock enables is selected. The reset port is not enabled, so only control path registers are connected
to the generated global HDL reset.

Resource Uses
LUT 32
Slice Reg 108
Xilinx LogiCORE DSP48 26

After place and route, the maximum clock frequency of the design is 541 MHz.

Performance — Partly Serial Systolic (1 < N < L)

This table shows post-synthesis resource utilization for the HDL code generated from the “Partly
Serial Systolic FIR Filter Implementation” example. The implementation is for a 32-tap FIR filter with
16-bit input, 16-bit coefficients, and a serialization factor of 8 cycles between valid input samples. The
synthesis targets a Xilinx Virtex-6 (XC6VLX240T-1FF1156) FPGA. The Global HDL reset type
parameter is Synchronous and Minimize clock enables is selected.

Resource Uses
LUT 181
FFS 428
Xilinx LogiCORE DSP48 2

After place and route, the maximum clock frequency of the design is 561 MHz.

Performance — Fully Serial Systolic (N ≥ L)

Resource Uses
LUT 122
Slice Reg 225
Xilinx LogiCORE DSP48 1

After place and route, the maximum clock frequency of the design is 590 MHz.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named Discrete FIR Filter HDL Optimized, and was included in the
DSP System Toolbox DSP System Toolbox HDL Support library.

High-throughput interface

1 Blocks

1-34

This block supports high-throughput data. You can apply input data as a N-by-1 vector, where N can
be up to 64 values. You cannot use frame-based input with the partly-serial architecture.

Input coefficients must be a row vector
Behavior changed in R2022a

When you use programmable coefficients with this block, you must supply the coefficients as a row
vector (1-by-N matrix). Before R2022a, the block accepted a one-dimensional array (for example,
ones(5)), a column vector(M-by-1 matrix), or a row vector of coefficients.

RAM-based party-serial architecture

This block uses a RAM-based partly-serial architecture which uses fewer resources than the former
register-based architecture. Uninitialized RAM locations can result in X values at the start of your
HDL simulation. You can avoid X values by having your test initialize the RAM, or by enabling the
Initialize all RAM blocks Configuration Parameter. This parameter sets the RAM locations to 0 for
simulation and is ignored by synthesis tools.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

For a FIR filter with multichannel, use the Discrete FIR Filter block instead.
HDL Architecture

The block provides three filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation and is suitable for FPGA and ASIC
applications. The partly serial systolic architecture provides a configurable serial implementation that
also makes efficient use of FPGA DSP blocks. For a filter implementation that matches multipliers,
pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

All three structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

You can set block parameters to make tradeoffs between throughput and resource utilization.

• For highest throughput, choose a fully parallel systolic or transposed architecture. The generated
code can accept input data and provides filtered output data on every cycle.

• For reduced area, choose partly serial systolic architecture. Then specify a rule that the block uses
to serialize the filter based on either input timing or resource usage. To specify a serial filter using

 Discrete FIR Filter

1-35

an input timing rule, set Specify serialization factor as to Minimum number of cycles
between valid input samples, and choose Number of cycles to be greater than or equal to
2. In this case, the filter accepts only input samples that are at least Number of cycles cycles
apart. To specify a serial filter using a resource rule, set Specify serialization factor as to
Maximum number of multipliers, and set Number of multipliers to be less than the
number of filter coefficients. In this case, the filter accepts input samples that are at least
NumCoeffs/NumMults apart.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The Discrete FIR Filter block does not support resource sharing optimization through HDL Coder
settings. Instead, set the Filter structure parameter to Partly serial systolic, and configure
a serialization factor based on either input timing or resource usage.

See Also
Objects
dsphdl.FIRFilter

Blocks
FIR Decimator | FIR Rate Converter | FIR Interpolator

Introduced in R2017a

1 Blocks

1-36

Farrow Rate Converter
Polynomial sample-rate converter
Library: DSP HDL Toolbox / Signal Operations

Description
The Farrow Rate Converter block converts the sample rate of a signal by using FIR filters to
implement a polynomial sinc approximation. A Farrow filter is an efficient rate converter when the
rate conversion factor is a ratio of large integer decimation and interpolation factors. Specify the rate
conversion factor by providing the input sample rate and the desired output sample rate. You can
provide the rate conversion factor as a fixed parameter or as a time-varying input signal.

You can use this block with the default coefficients for most rate conversions. The default coefficients
are a LaGrange interpolation that matches the Farrow Rate Converter block in DSP System Toolbox.
Or, you can specify a custom set of coefficients if the default does not meet your specifications.

The block provides a hardware-friendly interface with input and output control signals. To provide a
cycle-accurate simulation of the generated HDL code, the block models architectural latency
including pipeline registers and multiplier optimizations.

Ports
Input

data — Input data
real or complex scalar

Input data, specified as a real or complex scalar. When the input data type is an integer type or a
fixed-point type, the block uses fixed-point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

rate — Rate change factor
scalar

 Farrow Rate Converter

1-37

Specify the rate change factor as a positive rational value that is the ratio of the input sample rate
and the output sample rate, Fin/Fout. There are no limits on the rate change factor.

When this input value changes, the block resets the internal phase accumulator. This reset means you
can change the rate change factor from decimation to interpolation. For example, you can use this
block to align data streams that have similar but varying sample clocks.

The block derives the data type of the internal accumulator from the data type of this signal. The data
type of the rate change must have at least one integer bit and one fractional bit. The accumulator
data type is fixdt(1,fractionalWL+1,fractionalWL), where fractionalWL is the fraction length
of the rate change data type. The fractionalWL determines the accuracy of the phase timing, but also
increases the critical path. When the rate change word length is large, you can limit hardware
resource use by fitting the multiplicand data type to the DSP blocks on the FPGA. .

Dependencies

To enable this port, set the Rate change source parameter to Input port.
Data Types: fixed point

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean

Output

data — Filtered output data
real or complex scalar

Filtered output data, returned as a real or complex scalar. When the input data type is a floating-point
data type, the output data inherits the data type of the input data. When the input data type is an
integer type or a fixed-point type, the Output parameter on the Data Types tab controls the output
data type.
Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

1 Blocks

1-38

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.
Data Types: Boolean

Parameters
Main

Rate change source — Source of rate change
Property (default) | Input port

You can enter a constant rate change as a parameter or provide a time-varying rate change by using
an input port.

Selecting Input port enables the rate port on the block.

Rate change (fsin/fsout) — Rate change factor
147/160 (default) | positive real scalar

Specify the rate change factor as a ratio of the input sample rate and the output sample rate, Fin/
Fout, or provide a positive rational value. There are no limits on the rate change factor. Specify the
data type for this value by using the RateChange parameter on the Data Types tab.

Dependencies

To enable this parameter, set Rate change source to Property.
Data Types: double

Coefficients matrix — FIR filter coefficients
[-1/6 1/2 -1/3 0;1/2 -1 -1/2 1;-1/2 1/2 1 0;1/6 0 -1/6 0] (default) | matrix of real
values

Specify FIR filter coefficients as an M-by-N matrix of real values, where N is the number of filters and
M is the number of coefficients in each filter. N must be less than six. The block implements a
polynomial of order N – 1. The default value is a special closed-form LaGrange solution that
accomplishes most rate changes.
Data Types: double

Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed

This block implements the FIR filter stages by using the same architectures as the Discrete FIR Filter
block. Specify the HDL filter architecture as one of these structures:

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

 Farrow Rate Converter

1-39

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is a floating-point data type, the block ignores this parameter. For more details,
see “Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is a floating-point data type, the block ignores this parameter. For more
details, see “Overflow Handling”.

Coefficients — Data type of filter coefficients
Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is a floating-point data type,
the block ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input. When
selecting this data type, consider the size supported by the DSP blocks on your target FPGA.

RateChange — Data type of rate change factor
fixdt(1,16) (default) | <data type expression>

The block casts the Rate change (fsin/fsout) parameter value to this data type and uses this data
type to derive the data type for the internal accumulator. The accumulator data type is
fixdt(1,fractionalWL+1,fractionalWL), where fractionalWL is the fraction length of the rate
change data type. The quantization rounds to the nearest representable value and saturates on
overflow. When the input data type is a floating-point data type, the block ignores this parameter.

This data type must have enough integer bits to represent the fsIn/fsOut value. If the data type
specified does not have enough integer bits, the block returns an error. The default setting does not
specify a number of fractional bits, so the block can compute the necessary integer bits. This data
type must have at least one integer bit and one fractional bit. The fractional part of this data type
determines the accuracy of the phase timing, but also increases the critical path. When the rate
change word length is large, you can limit hardware resources by fitting the multiplicand data type to
the DSP blocks on the FPGA.
Dependencies

To enable this parameter, set Rate change source to Property.

Multiplicand — Data type of multiplicand
Inherit: Inherit via internal rule (default) | <data type expression>

1 Blocks

1-40

The block casts the output of the accumulator to this data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is a floating-point
data type, the block ignores this parameter. When the rate change word length is large, you can limit
hardware resource use by controlling the multiplicand data type. When selecting this data type,
consider the size supported by the DSP blocks on your target FPGA.

Output — Data type of filter output
Inherit: same as first input (default) | <data type expression>

The block casts the output of each filter stage to this data type. The quantization uses the settings of
the Rounding mode and Overflow mode parameters. When the input data type is a floating-point
data type, the block ignores this parameter.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Algorithms
The Farrow Rate Converter block uses Horner’s rule to compute samples from the polynomial. The
polynomial is implemented with several FIR filters. Each FIR filter is an instance of the Discrete FIR
Filter block. For details of filter architectures and resource optimization, see “FIR Filter Architectures
for FPGAs and ASICs”.

This diagram shows the Farrow architecture for a four-stage filter. There are four FIR filters. The
output of each filter is added to the result of the previous stage, cast to the output data type, then
multiplied by the current value of the accumulator. The accumulator operates on the fractional part of
the rate change, and uses a data type derived from the rate change data type. The accumulator data
type is fixdt(1,fractionalWL+1,fractionalWL), where fractionalWL is the fraction length of
the rate change data type.

 Farrow Rate Converter

1-41

When you set the coefficient data type to Same as input wordlength, each subfilter computes the
best precision data type based on its coefficients. As a result, each filter can have a different output
data type. To maintain full precision when you set the output data type to Full precision, the
block casts the output of each subfilter to the highest precision data type of all the subfilter data
types.

The table shows the coefficient data type and output data type for each subfilter when using the
default Farrow coefficients, and an input data type of fixdt(1,18,14).

Coefficient Value Coefficient Data Type Subfilter Output Data Type
-1/6 1/2 -1/2 1/6 fixdt(1,18,17) fixdt(1,36,31)
1/2 -1 1/2 0 fixdt(1,18,17) fixdt(1,36,31)
-1/3 -1/2 1 -1/6 fixdt(1,18,16) fixdt(1,35,30)
0 1 0 0 fixdt(1,18,16) fixdt(1,34,30)

In this case, the full precision data type is fixdt(1,36,31).

Performance

This table shows post-synthesis resource utilization for the HDL code generated for the default
coefficients and rate change settings, with 16-bit input and 16-bit coefficients. The synthesis targets a
Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset type parameter is Synchronous
and Minimize clock enables is selected. The reset port is not enabled, so only control path
registers are connected to the generated global HDL reset.

Resource Uses
LUT 394
FF 604
BRAM 0
Xilinx LogiCORE DSP48 13

After place and route, the maximum clock frequency of the design is 495 MHz.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-42

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Objects
dsphdl.FarrowRateConverter | dsphdl.FIRFilter

Blocks
FIR Rate Converter | Discrete FIR Filter

Topics
“Sample Rate Conversion for an LTE Receiver” (Wireless HDL Toolbox)

Introduced in R2022a

 Farrow Rate Converter

1-43

NCO
Generate real or complex sinusoidal signals
Library: DSP HDL Toolbox / Signal Operations

DSP HDL Toolbox / Sources

Description
The NCO block generates real or complex sinusoidal signals, while providing hardware-friendly
control signals.

A numerically-controlled oscillator (NCO) accumulates a phase increment and uses the quantized
output of the accumulator as the index to a lookup table that contains the sine wave values. The wrap
around of the fixed-point accumulator and quantizer data types provide periodicity of the sine wave,
and quantization reduces the necessary size of the table for a given frequency resolution.

For an example of how to generate a sine wave using the NCO block, see “Generate Sine Wave”. For
more information on configuration and implementation, refer to the “Algorithms” on page 1-51
section.

The block also provides these features:

• Optional frame-based output.
• A lookup table compression option to reduce the lookup table size. This compression results in

less than one LSB loss in precision. See “Lookup Table Compression” on page 1-52 for more
information.

• An optional input port for external dither.
• An optional reset port that resets the phase accumulator to its initial value.
• An optional output port for the current NCO phase.

1 Blocks

1-44

Ports

Note

• This block appears in the Sources libraries with Phase increment source parameter set to
Property. The only input port is valid.

• This block appears in the Signal Operations libraries with Phase increment source parameter
set to Input port. This configuration shows the optional input port inc.

This icon shows the optional ports of the NCO block.

Input

inc — Phase increment
scalar integer

Phase increment, specified as a scalar integer. The block casts this value to match the accumulator
word length.

double and single data types are supported for simulation but not for HDL code generation.
Dependencies

To enable this port, set the Phase increment source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

offset — Phase offset
scalar integer

Phase offset, specified as a scalar integer.

double and single data types are supported for simulation but not for HDL code generation.
Dependencies

To enable this port, set the Phase offset source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

dither — Dither
integer | column vector of integers

 NCO

1-45

Dither, specified as an integer or a column vector of integers. The length of the vector must equal the
Samples per frame parameter value.

double and single data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, set the Dither source parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

valid — Control signal that enables NCO operation
scalar

Control signal that enables NCO operation, specified as a Boolean scalar. When this signal is 1, the
block increments the phase and captures any input values. When this signal is 0, the block holds the
phase accumulator and ignores any input values.

When the Samples per frame parameter is greater than 1, this value enables processing of
Samples per frame samples.
Data Types: Boolean

reset accum — Resets the accumulator
scalar

Control signal that resets the accumulator, specified as a Boolean scalar. When this signal is 1, the
block resets the accumulator to its initial value. This signal does not reset the output samples in the
pipeline.

Dependencies

To enable this port, select the Enable accumulator reset input port parameter.
Data Types: Boolean

Output

sin, cos, exp — Generated waveform
scalar | column vector

Generated waveform, returned as a scalar or as a column vector with length equal to the Samples
per frame parameter value. The output can be a single port that returns sin or cos values, a single
port that returns exp values representing cosine + j*sine, or two ports that return sin and cos
values, respectively.

When all input values are fixed-point type or all input ports are disabled, the block determines the
output type using the Output data type parameter. When any input value is floating-point type, the
block ignores the Output data type parameter. In this case, the block returns the waveform as
floating-point values. Floating-point data types are supported for simulation but not for HDL code
generation.

Dependencies

By default, this output port is a sine wave, sin. The port label and format changes based on the Type
of output signal parameter.

1 Blocks

1-46

phase — Current phase of NCO
scalar | column vector

Current phase of NCO, returned as a scalar or as a column vector with length equal to the Samples
per frame parameter value. The phase is the output of the quantized accumulator with offset and
increment applied. If quantization is disabled, this port returns the output of the accumulator with
offset and increment applied. The values are of type fixdt(1,N,0), where N is the Number of
quantizer accumulator bits parameter value. If quantization is disabled, then N is the
Accumulator Word length parameter value.

If any input value is floating-point type, the block returns the phase as a floating-point value.
Floating-point data types are supported for simulation but not for HDL code generation.

Dependencies

To enable this port, select the Enable phase port parameter.
Data Types: single | double | fixdt(1,N,0)

valid — Indicates validity of output data
scalar

Control signal that indicates validity of output data, returned as a Boolean scalar. When output valid
is 1, the values on the sin, cos, exp, and phase ports are valid. When output valid is 0, the values on
the output ports are not valid.

When the Samples per frame parameter is greater than 1, this signal indicates the validity of all
elements in the output vector.
Data Types: Boolean

Parameters
Main

Note This block supports double and single input for simulation but not for HDL code generation.
When all input values are fixed-point type or all input ports are disabled, the block determines the
output type using the Output data type parameter. When any input value is floating-point type, the
block ignores the Output data type parameter. In this case, the block returns the waveform and
optional phase as floating-point values.

To use the Fixed-Point Designer™ data type override feature, you can obtain a double output value
by applying double input data to one of the optional ports.

Phase increment source — Source of phase increment
Input port (default) | Property

You can set the phase increment with an input port or by entering a value for the parameter. If you
select Property, the Phase increment parameter appears for you to enter a value. If you select
Input port, the inc port appears on the block.

Phase increment — Phase increment for generated waveform
100 (default) | integer

 NCO

1-47

Phase increment for the generated the waveform, specified as an integer. The block casts this value
to match the accumulator word length.

Dependencies

To enable this parameter, set the Phase increment source parameter to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

Phase offset source — Source of phase offset
Input port (default) | Property

You can set the phase offset with an input port or by entering a value for the parameter. If you select
Property, the Phase offset parameter appears for you to enter a value. If you select Input port,
the offset port appears on the block.

Phase offset — Phase offset for generated waveform
0 (default) | integer

Phase offset for the generated waveform, specified as an integer.

Dependencies

To enable this parameter, set the Phase offset source parameter to Property.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

Dither source — Source of number of dither bits
Property (default) | Input port | None

You can set the dither from an input port or from a parameter. If you select Property, the Number
of dither bits parameter appears. If you select Input port, a port appears on the block. If you
select None, the block does not add dither.

Number of dither bits — Bits used to express dither
4 (default) | positive integer

Number of dither bits, specified as a positive integer.

Dependencies

To enable this parameter, set the Dither source parameter to Property.

Samples per frame — Vector size for frame-based input and output
1 (default) | positive integer

When you set this value to 1, the block has scalar input and output. When this value is greater than 1,
the dither port expects a column vector of length Samples per frame and the sin, cos, exp, and
phase ports return column vectors of length Samples per frame.

Enable look up table compression method — Compress the lookup table
off (default) | on

By default, the block implements a noncompressed lookup table, and the output of this block matches
the output of the NCO block. When you enable this option, the block implements a compressed
lookup table. The Sunderland compression method reduces the size of the lookup table, losing less
than one LSB of precision. The spurious free dynamic range (SFDR) is empirically 1–3 dB lower than

1 Blocks

1-48

the noncompressed case. The hardware savings of the compressed lookup table allow room to
improve performance by increasing the word length of the accumulator and the number of quantize
bits. For detail of the compression method, see “Algorithms” on page 1-51.

Enable accumulator reset input port — Enable reset control signal
off (default) | on

Select this parameter to enable the reset accum port. When reset accum is 1, the block resets the
accumulator to its initial value.

Type of output signal — Format of output waveform
Sine (default) | Cosine | Complex exponential | Sine and cosine

If you select Sine or Cosine, the block shows the applicable port, sin or cos. If you select Complex
exponential, the output is of the form cosine + j*sine and the port is labeled exp. If you select
Sine and cosine, the block shows two ports, sin and cos.

When you set the Type of output signal parameter to Complex exponential or Sine and
cosine, the block implements a 1/8 sine wave lookup table for each of the sine and cosine parts of
the waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses similar hardware resources
compared to single output mode.

Enable phase port — Output current phase
off (default) | on

Select this parameter to return the current NCO phase on the phase port. The phase is the output of
the quantized accumulator, with offset and increment applied. If quantization is disabled, this port
returns the output of the accumulator, with offset and increment applied.

Data Types

Rounding Mode — Rounding mode for fixed-point operations
Floor (default)

Rounding mode for fixed-point operations. Rounding Mode is a read-only parameter with value
Floor.

Overflow mode — Overflow mode for fixed-point operations
Wrap (default)

Overflow mode for fixed-point operations. Overflow mode is a read-only parameter. Fixed-point
numbers wrap around on overflow.

Accumulator Data Type — Accumulator data type
Binary point scaling (default)

Accumulator data type description. This parameter is read-only, with value Binary point scaling.
The block defines the fixed-point data type using the Accumulator Signed, Accumulator Word
length, and Accumulator Fraction length parameters.

Accumulator Signed — Signed or unsigned accumulator data format
Signed (default)

This parameter is read-only. All output is signed format.

 NCO

1-49

Accumulator Word length — Accumulator word length
16 (default) | integer

Units are in bits. This value must include the sign bit.

If you clear the Quantize phase parameter, then Accumulator word length determines the LUT
size. For HDL code generation, the LUT size must be between 2 and 217 entries. When you select
Enable look up table compression method, this parameter must be an integer in the range [5,21].
When you clear Enable look up table compression method, this parameter must be an integer in
the range [3,19]. For more information on how this parameter affects the LUT size, see the
“Algorithms” on page 1-51 section.

When you select the Quantize phase parameter, there is no limit to the Accumulator word length
parameter value.

Accumulator Fraction length — Accumulator fraction length
0 (default) | integer

This parameter is read-only. The accumulator fraction length is zero bits.

The accumulator operates on integers. If the phase increment is fixdt type with a fractional part,
the block returns an error.

Quantize phase — Quantize accumulated phase
off (default) | on

When you select Quantize phase, the block quantizes the result of the phase accumulator to a fixed
bit-width. The block uses this quantized value to select a waveform value from the lookup table.
Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Select the size of the lookup table by using the Number of
quantizer accumulator bits parameter.

When you clear Quantize phase, the block uses the full accumulator value as the address of the
lookup table.

Number of quantizer accumulator bits — Number of quantizer accumulator bits
12 (default) | integer

Number of quantizer accumulator bits, specified as an integer scalar less than the accumulator word
length. For HDL code generation, this parameter value must result in a LUT size between 2 and 217

entries. When you select Enable look up table compression method, this parameter must be an
integer in the range [5,21]. When you clear Enable look up table compression method, this
parameter must be an integer in the range [3,19]. For more information on how this parameter
affects the LUT size, see the “Algorithms” on page 1-51 section.

Dependencies

To enable this parameter, select the Quantize phase parameter.

Output Data Type — Output data type
Binary point scaling (default) | double | single

Specify the data type for the sin, cos, and exp ports. This parameter is ignored if any input is of
floating-point type. In that case, the output data type is floating-point.

1 Blocks

1-50

If you select Binary point scaling, the block defines the fixed-point data type using the Output
Signed, Output Word length, and Output Fraction length parameters.

Output Signed — Signed or unsigned output data format
Signed (default)

This parameter is read-only. All output is signed format.

Output Word length — Output word length
16 (default) | integer

Units are in bits. This value must include the sign bit.

Output Fraction length — Output fraction length
14 (default) | integer

Units are in bits.

Algorithms
The frequency resolution of the sine wave depends on the size of the accumulator. Given a sample
time, Ts, and the desired output frequency resolution Δf, calculate the necessary accumulator word
length, N.

N = ceil log2
1

Ts ⋅ Δf

For a desired output frequency Fo, calculate the phase increment.

phaseincrement = round(F0Ts2N)

Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Calculate the quantized word length to achieve a desired spurious
free dynamic range (SFDR).

Q = ceil SFDR− 12
6

Phase offset and dither are optionally added at the accumulator stage. For a desired phase offset (in
radians) of the output waveform, calculate the phase offset value that the block adds in the
accumulator.

phaseof f set = 2N ⋅ desiredphaseof f set
2π

The NCO implementation depends on whether you select Enable look up table compression
method.

Without lookup table compression, the block uses the same quarter-sine lookup table as the NCO
block. The size of the LUT is 2Q-2×W bits, where Q is Number of quantizer accumulator bits and
W is Output word length.

 NCO

1-51

The block casts the phase increment value to match the accumulator word length.

If you do not enable Quantize phase, then Q = N, where N is Accumulator Word length. Consider
the impact on simulator memory and hardware resources when you select these parameters.

When you set the Type of output signal parameter to Complex exponential or Sine and
cosine, the block implements a 1/8 sine wave lookup table for each of the sine and cosine parts of
the waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses similar hardware resources
compared to single output mode.

For an example of how to generate a sine wave using the NCO block, see “Generate Sine Wave”.

Lookup Table Compression

When you select lookup table (LUT) compression, the NCO block applies the Sunderland compression
method. Sunderland techniques use trigonometric identities to divide each phase of the quarter sine
wave into three components and express it as:

sin(A + B + C) = sin(A + B)cos(C) + cos(A)cos(B)sin(C)− sin(A)sin(B)sin(C)

If the quarter-sine phase has Q-2 bits, then the phase components A and B have a word length of
LA=LB=ceil((Q-2)/3). Phase component C contains the remaining phase bits. If the phase has 12
bits, then the quarter sine phase has 10 bits, and the components are defined as:

• A, the four most significant bits

(0 ≤ A ≤ π
2)

• B, the next four bits

(0 ≤ B ≤ π
2 × 2−4)

• C, the remaining two least significant bits

(0 ≤ C ≤ π
2 × 2−8)

Given the relative sizes of A, B, and C, the equation can be approximated by:

sin(A + B + C) ≈ sin(A + B) + cosAsinC

1 Blocks

1-52

The NCO block implements this equation with one LUT for sin(A + B) and one LUT for cos(A)sin(C).
The second term is a fine correction factor that you can truncate to fewer bits without losing
precision. Therefore, the second LUT returns a four-bit result.

With the default accumulator size of 16 bits, and the default quantized phase width of 12 bits, the
LUTs use 28×16 plus 26×4 bits (4.5 kb). For comparison, a quarter-sine lookup table without
compression uses 210×16 bits (16 kb). The compression approximation is accurate within one LSB,
resulting in an SNR of at least 60 dB on the output. See [1].

When you set the Type of output parameter to Complex exponential or Sine and cosine, the
block implements a compressed lookup table for each of the sine and cosine parts of the waveform.
The hardware resource use is still smaller than dual output mode with an uncompressed table.

Control Signals

The block has two input control signals, reset accum (optional) and valid, and one output control
signal, valid. When reset accum is 1, the block sets the phase accumulator to its initial value. When
the input valid is 1, the block increments the phase and captures any input values. When this signal
is 0, the block holds the phase accumulator and ignores any input values. When the output valid
signal is 1, the values on the other output ports are valid.

Latency

The latency of the NCO block is six cycles.

Performance

This table shows post-synthesis resource utilization for the HDL code generated for the NCO block in
the “Generate Sine Wave” example. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA.

Resource Uses
LUT 744
Slice Reg 156
Xilinx LogiCORE DSP48 0

After place and route, the maximum clock frequency of the design is 477 MHz.

 NCO

1-53

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named NCO HDL Optimized, and was included in the DSP System
Toolbox DSP System Toolbox HDL Support library.

Resource optimization for dual output mode

When you set the Type of output signal parameter to Complex exponential or Sine and
cosine, this block implements a 1/8 sine wave lookup table for each of the sine and cosine parts of
the waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses similar hardware resources
compared to single output mode. In previous releases, the block implemented one lookup table for
each output waveform.

HDL-optimized NCO requires valid input port
Behavior changed in R2020a

In previous releases, the input validIn port of the NCO HDL Optimized block was optional. It is now
required, and renamed valid. If you are using no other input ports, the block uses the valid signal as
an enable signal.

HDL-optimized NCO with floating-point inputs applies phase quantization
Behavior changed in R2020a

The output waveform returned from floating-point input values has changed. The output waveform
now matches that returned from the same input values specified in fixed-point types.

Prior to R2020a, when using floating-point input types, the NCO HDL Optimized block did not
quantize the phase internally. The block expected floating-point phase increment and phase offset
inputs specified in radians. Now, the block quantizes the phase internally, and you must specify the
input phase increment and offset in terms of the quantized size, for both floating-point and fixed-point
input types.

For example, prior to R2020a, for a floating-point HDL NCO to generate output samples with a
desired output frequency of F0 and sample frequency of Fs, you had to specify the phase increment as
2π(F0/Fs) and phase offset as π/2.

Starting in R2020a, you must specify the phase increment and phase offset in terms of the quantized
size, N. These input values are the same as the input values you use with fixed-point types. Specify
the phase increment as (F0×2N)/Fs, and the phase offset as (π/2)×2N/2π, or 2N/4.

NCO HDL Optimized block now ignores LUTRegisterResetType parameter
Behavior changed in R2020a

In previous releases, you could choose from two options for the LUTRegisterResetType parameter
on the HDL Block Properties dialog of the NCO HDL Optimized block. The two options were
default, and none. Starting in R2020a, the block ignores the parameter setting and uses none for
this parameter value. This option does not connect a reset signal to the LUT registers. This
configuration enables the synthesis tool to determine whether to implement the lookup tables with
LUTs or BRAM.

1 Blocks

1-54

References
[1] Cordesses, L., "Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1)." IEEE

Signal Processing Magazine. Volume 21, Issue 4, July 2004, pp. 50–54.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• When you set Dither source to Property, the block adds random dither every cycle. If you
generate a validation model with these settings, a warning is displayed. Random generation of the
internal dither can cause mismatches between the models. You can increase the error margin for
the validation comparison to account for the difference. You can also disable dither or set Dither
source to Input port to avoid this issue.

• You cannot use the NCO block inside a Resettable Synchronous Subsystem.

See Also
Blocks
NCO

 NCO

1-55

Objects
dsphdl.NCO

Topics
“HDL QAM Transmitter and Receiver” (Communications Toolbox)

Introduced in R2013a

1 Blocks

1-56

Channel Synthesizer
Combine narrowband signals into multichannel signal
Library: DSP HDL Toolbox / Filtering

Description
The Channel Synthesizer block combines narrowband signals into a multi-channel signal using the
polyphase filter bank technique.

The block accepts a real- or complex-valued row-vector input data and control signals, and outputs
synthesized column-vector and a control signal. You can achieve gigasamples-per-second (GSPS)
throughput by using this block. The block implements a polyphase filter, with one subfilter per input
vector element. The block supports HDL code generation and hardware deployment.

Ports
Input

data — Input data
real-valued row vector | complex-valued row vector

Input data, specified as a real- or complex-valued row vector.

The vector length must be a power of 2 and in the range [4, 64].

You can use double and single data types for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

 Channel Synthesizer

1-57

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Synthesized output data
complex-valued column vector

Synthesized output data, returned as a complex-valued column vector.

When the input data type is a floating-point type, the output data inherits the data type of the input
data. When the input data type is an integer type or a fixed-point type, the Output parameter on the
Data Types tab controls the output data type.

The output size is same as the input size and is equal to the number of frequency bands or IFFT
length. The output order is bit natural. The output data type depends on the IFFT bit growth,
required to avoid overflow, and the data type set in the Output parameter.
Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

Parameters
Main

Filter coefficients — Polyphase filter coefficients
[-0.0329 0.1218 0.3183 0.4829 0.5469 0.4829 0.5469 0.4829 0.3183 0.1218
-0.0329] (default) | complex-valued vector

Polyphase filter coefficients, specified as a vector of numeric values. If the number of coefficients is
not a multiple of the number of frequency bands or the IFFT length, the block pads this vector with
zeros. The default filter specification is a raised-cosine FIR filter, rcosdesign(0.25,2,4,'sqrt').
You can specify a vector of coefficients or a call to a filter design function that returns the coefficient
values. By default, the block casts the coefficients to the same word length as the input.

Filter structure — HDL filter architecture
Direct form transposed (default) | Direct form systolic

Specify the HDL filter architecture as one of these values:

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

1 Blocks

1-58

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture”.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

Complex multiplication — HDL implementation of complex multipliers
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

Specify the HDL implementation of complex multipliers as either Use 4 multipliers and 2
adders or Use 3 multipliers and 5 adders. The speed of the multipliers depends on your
synthesis tool and target device.

Divide butterfly outputs by two — IFFT scaling
on (default) | off

When you select this parameter, the IFFT implements an overall 1/N scale factor by scaling the result
of each pipeline stage by 2, where N is the IFFT length. This adjustment keeps the output of the IFFT
in the same amplitude range as its input. If you disable scaling, the IFFT avoids overflow by
increasing the word length by one bit at each stage.

Data Types

Rounding mode — Rounding mode for typecasting output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Use fixed-point arithmetic for internal calculations when the input is an integer or fixed-point data
type. This option does not apply when the input is single or double. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for typecasting output
off (default) | on

Use fixed-point arithmetic for internal calculations when the input is an integer or fixed-point data
type. This option does not apply when the input is single or double. Cast the coefficients and
output of the polyphase filter to the data types you specify. For more information, see “Overflow
Handling”.

Coefficients — Data type of the coefficients
Inherit: Same word length as input (default) | <data type expression>

Cast the polyphase filter coefficients to this data type using the rounding and overflow settings you
specify. When you select Inherit: Same word length as input (default), the block selects the
binary point using fixed point best-precision rules.

Output — Data type of block output
Inherit: via internal rule (default) | Inherit: Same as input | <data type
expression>

When you select Inherit: via internal rule, the block selects a best-precision binary point by
considering filter coefficients values and the input data type range. When you select Inherit: Same
as input, the block casts the output of the polyphase filter to the input data type, using the
rounding and overflow settings you specify.

 Channel Synthesizer

1-59

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

Algorithms
The polyphase filter algorithm requires a subfilter for each FFT channel. For more information about
the polyphase filter architecture, see the Channelizer (DSP System Toolbox) block reference page.

If the FFT length is N, the block implements N subfilters in the hardware. Each subfilter is an FIR
filter direct form transposed or direct form systolic with NumCoeffs/N taps. The block casts the output
of the subfilters to the specified Output data type by using the rounding and overflow settings you
select and then pipelines filter tap in the subfilter to target the DSP sections of an FPGA.

Latency

The latency varies with the input size and filter structure. After you update the model, the block
displays the latency on the block icon. The displayed latency is the number of cycles between the first
valid input and the first valid output, assuming that the input is continuous. The filter coefficients and
complex multiplication do not affect the latency.

This figure shows the output of the block for a vector input length 8 when you set the Filter
structure parameter to Direct form transposed and all other parameters to their default values.
The latency of the block is 19 clock cycles.

1 Blocks

1-60

This figure shows the output of the block for a vector input of length 8 when you set the Filter
structure parameter to Direct form systolic and all other parameters to their default values.
The latency of the block is 31 clock cycles.

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to the Xilinx Zynq- 7000 ZC706 evaluation board. The two examples in the tables use this
common configuration:

• 1-by-8 vector
• 16-bit complex input data
• Filter structure — Direct form transposed
• Filter length — 96 coefficients
• Coefficient data type — Same word length as input
• Output data type — Same as input
• Complex multiplication (default) — Use 4 multipliers and 2 adders
• Output scaling — Enabled

The performance of the synthesized HDL code varies with your target and synthesis options.

When you set the Filter structure parameter to Direct form transposed, the block achieves a
clock frequency of 382 MHz. The design uses these resources.

Resource Number Used
LUT 1953
FFS 3833
Xilinx LogiCORE® DSP48 208

When you set the Filter structure to Direct form systolic, the block achieves a clock
frequency of 381 MHz. The design uses these resources.

 Channel Synthesizer

1-61

Resource Number Used
LUT 2026
FFS 3519
Xilinx LogiCORE DSP48 208

References
[1] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Upper Saddle River,

N.J: Prentice Hall PTR, 2004.

[2] Harris, Frederic J., Chris Dick, and Michael Rice. "Digital Receivers and Transmitters Using
Polyphase Filter Banks for Wireless Communications." IEEE® Transactions on Microwave
Theory and Techniques. 51, no 4, (April 2003): 1395–1412. https://doi.org/10.1109/
TMTT.2003.809176.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1 Blocks

1-62

See Also
Blocks
Channelizer

Objects
dsphdl.ChannelSynthesizer

Introduced in R2022a

 Channel Synthesizer

1-63

FFT
Compute fast Fourier transform (FFT)
Library: DSP HDL Toolbox / Transforms

Description
The FFT block provides two architectures that implement the algorithm for FPGA and ASIC
applications. You can select an architecture that optimizes for either throughput or area.

• Streaming Radix 2^2 — Use this architecture for high-throughput applications. This
architecture supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS)
throughput using vector input.

• Burst Radix 2 — Use this architecture for a minimum resource implementation, especially with
large fast Fourier transform (FFT) sizes. Your system must be able to tolerate bursty data and
higher latency. This architecture supports only scalar input data.

The FFT block accepts real or complex data, provides hardware-friendly control signals, and optional
output frame control signals.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. Only the Streaming
Radix 2^2 architecture supports a vector input. The vector size must be a power of 2, in the range
from 1 to 64, and less than or equal to FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

reset — Clears internal states
scalar

1 Blocks

1-64

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Frequency channel output data
scalar or column vector of real or complex values

When input is fixed-point data type and scaling is enabled, the output data type is the same as the
input data type. When the input is integer type and scaling is enabled, the output is fixed-point type
with the same word length as the input integer. The output order is bit-reversed by default. If scaling
is disabled, the output word length increases to avoid overflow. Only the Streaming Radix 2^2
architecture supports vector input and output. For more information, see the Divide butterfly
outputs by two parameter.
Data Types: double | single | fixed point

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

For a waveform that shows this protocol, see the third diagram in the Timing Diagram section.

Dependencies

To enable this port, set the Architecture parameter to Burst Radix 2.
Data Types: Boolean

start — Indicates first valid cycle of output frame
scalar

Control signal that indicates the first valid cycle of the output frame. When start is 1 (true), the
block returns the first valid sample of the frame on the output data port.

 FFT

1-65

Dependencies

To enable this port, on the Control Ports tab, select the Enable start output port parameter.
Data Types: Boolean

end — Indicates last valid cycle of output frame
scalar

Control signal that indicates the last valid cycle of the output frame. When end is 1 (true), the block
returns the last valid sample of the frame on the output data port.

Dependencies

To enable this port, on the Control Ports tab, select the Enable end output port parameter.
Data Types: Boolean

Parameters
Main

FFT length — Number of data points for one FFT calculation
1024 (default)

This parameter specifies the number of data points used for one FFT calculation. For HDL code
generation, the FFT length must be a power of 2 between 22 to 216.

Architecture — Architecture type
Streaming Radix 2^2 (default) | Burst Radix 2

This parameter specifies the type of architecture.

• Streaming Radix 2^2 — Select this value to specify low-latency architecture. This architecture
type supports GSPS throughput when using vector input.

• Burst Radix 2 — Select this value to specify minimum resource architecture. This architecture
type does not support vector input. When you use this architecture, your input data must comply
with the ready backpressure signal.

For more details about these architectures, see “Algorithms” on page 1-68.

Complex multiplication — HDL implementation
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

This parameter specifies the complex multiplier type for HDL implementation. Each multiplication is
implemented either with Use 4 multipliers and 2 adders or with Use 3 multipliers and
5 adders. The implementation speed depends on the synthesis tool and target device that you use.

Output in bit-reversed order — Order of output data
on (default) | off

This parameter returns output elements in bit-reversed order.

When you select this parameter, the output elements are bit-reversed. To return output elements in
linear order, clear this parameter.

1 Blocks

1-66

The FFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Input in bit-reversed order — Expected order of input data
off (default) | on

When you select this parameter, the block expects input data in bit-reversed order. By default, this
parameter is disabled, and the block expects the input in linear order.

The FFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Divide butterfly outputs by two — FFT scaling
off (default) | on

When you select this parameter, the FFT implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the FFT in the
same amplitude range as its input. If you disable scaling, the FFT avoids overflow by increasing the
word length by 1 bit after each butterfly multiplication. The bit increase is the same for both
architectures.

Data Types

Rounding mode — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter specifies the type of rounding mode for internal fixed-point calculations. For more
information about rounding modes, see “Rounding Modes”. When the input is any integer or fixed-
point data type, this block uses fixed-point arithmetic for internal calculations. This parameter does
not apply when the input data is single or double. Rounding applies to twiddle-factor
multiplication and scaling operations.

Control Ports

Enable reset input port — Optional reset signal
off (default) | on

This parameter enables a reset input port. When you select this parameter, the input reset port
appears on the block icon.

Enable start output port — Optional control signal indicating start of data
off (default) | on

This parameter enables a port that indicates the start of output data. When you select this parameter,
the output start port appears on the block icon.

Enable end output port — Optional control signal indicating end of data
off (default) | on

This parameter enables a port that indicates the end of output data. When you select this parameter,
the output end port appears on the block icon.

 FFT

1-67

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

1 Blocks

1-68

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

 FFT

1-69

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and input vector size. After you update the model, the block
icon displays the latency. The displayed latency is the number of cycles between the first valid input
and the first valid output, assuming the input is contiguous. To obtain this latency programmatically,
see “Automatic Delay Matching for the Latency of FFT Block”.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

1 Blocks

1-70

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex®-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

 FFT

1-71

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FFT HDL Optimized, and was included in the DSP System
Toolbox DSP System Toolbox HDL Support library.

FFT length of 4
Behavior changed in R2022a

This block now supports an FFT length of 4. In previous releases the FFT length had to be a power of
2 from 23 to 216.

References
[1] Algnabi, Y.S, F.A. Aldaamee, R. Teymourzadeh, M. Othman, and M.S. Islam. “Novel architecture of

pipeline Radix 2^2 SDF FFT Based on digit-slicing technique.” 10th IEEE International
Conference on Semiconductor Electronics (ICSE). 2012, pp. 470–474.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

This block supports HDL code generation using HDL Coder. HDL Coder provides additional
configuration options that affect HDL implementation and synthesized logic.

HDL Architecture

This block has a single, default HDL architecture.

1 Blocks

1-72

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• You cannot generate HDL code for this block inside an Enabled Subsystem.

See Also
Blocks
IFFT | Channelizer

Objects
dsphdl.FFT | dsphdl.IFFT

Introduced in R2014a

 FFT

1-73

IFFT
Compute inverse fast Fourier transform (IFFT)
Library: DSP HDL Toolbox / Transforms

Description
The IFFT block provides two architectures that implement the algorithm for FPGA and ASIC
applications. You can select an architecture that optimizes for either throughput or area.

• Streaming Radix 2^2 — Use this architecture for high-throughput applications. This
architecture supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS)
throughput using vector input.

• Burst Radix 2 — Use this architecture for a minimum resource implementation, especially with
large fast-Fourier-transform (FFT) sizes. Your system must be able to tolerate bursty data and
higher latency. This architecture supports only scalar input data.

The IFFT accepts real or complex data, provides hardware-friendly control signals, and optional
output frame control signals.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. Only the Streaming
Radix 2^2 architecture supports a vector input. The vector size must be a power of 2, in the range
from 1 to 64, and less than or equal to the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

When you set the Architecture parameter to Burst Radix 2, you must apply input data and valid
signals only when ready is 1 (true). The block ignores the input data and valid signals when ready is
0 (false).
Data Types: Boolean

1 Blocks

1-74

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Frequency channel output data
scalar or column vector of real or complex values

When input is fixed-point data type and scaling is enabled, the output data type is the same as the
input data type. When the input is integer type and scaling is enabled, the output is fixed-point type
with the same word length as the input integer. The output order is bit-reversed by default. If scaling
is disabled, the output word length increases to avoid overflow. Only the Streaming Radix 2^2
architecture supports vector input and output. For more information, see Divide butterfly outputs
by two parameter.
Data Types: fixed point | double | single

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

For a waveform that shows this protocol, see the third diagram in the Timing Diagram section.

Dependencies

To enable this port, set the Architecture parameter to Burst Radix 2.
Data Types: Boolean

start — Indicates first valid cycle of output frame
scalar

 IFFT

1-75

Control signal that indicates the first valid cycle of the output frame. When start is 1 (true), the
block returns the first valid sample of the frame on the output data port.

Dependencies

To enable this port, on the Control Ports tab, select the Enable start output port parameter.
Data Types: Boolean

end — Indicates last valid cycle of output frame
scalar

Control signal that indicates the last valid cycle of the output frame. When start is 1 (true), the
block returns the last valid sample of the frame on the output data port.

Dependencies

To enable this port, on the Control Ports tab, select the Enable end output port parameter.
Data Types: Boolean

Parameters
Main

FFT length — Number of data points used for one FFT calculation
1024 (default)

This parameter specifies the number of data points used for one inverse-fast-Fourier-transform (IFFT)
calculation. For HDL code generation, the FFT length must be a power of 2 between 22 and 216.

Architecture — Architecture type
Streaming Radix 2^2 (default) | Burst Radix 2

This parameter specifies the type of architecture.

• Streaming Radix 2^2 — Select this value to specify low-latency architecture. This architecture
type supports GSPS throughput when using vector input.

• Burst Radix 2 — Select this value to specify minimum resource architecture. This architecture
type does not support vector input. When you use this architecture, your input data must comply
with the ready backpressure signal.

For HDL code generation, the FFT length must be a power of 2 between 22 and 216.

For more details about these architectures, see “Algorithms” on page 1-78.

Complex Multiplication — HDL implementation
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

This parameter specifies the complex multiplier type for HDL implementation. Each multiplication is
implemented either with Use 4 multipliers and 2 adders or with Use 3 multipliers and
5 adders. The implementation speed depends on the synthesis tool and target device that you use.

Output in bit-reversed order — Order of output data
on (default) | off

1 Blocks

1-76

This parameter returns output elements in bit-reversed order.

When you select this parameter, the output elements are bit-reversed. To return output elements in
linear order, clear this parameter.

The IFFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Input in bit-reversed order — Expected order of input data
off (default) | on

When you select this parameter, the block expects input data in bit-reversed order. By default, the
check box is cleared and the input is expected in linear order.

The IFFT algorithm calculates output in the reverse order to the input. If you specify the output to be
in the same order as the input, the algorithm performs an extra reversal operation. For more
information, see “Linear and Bit-Reversed Output Order”.

Divide butterfly outputs by two — FFT scaling
on (default) | off

When you select this parameter, the block implements an overall 1/N scale factor by dividing the
output of each butterfly multiplication by two. This adjustment keeps the output of the IFFT in the
same amplitude range as its input. If you disable scaling, the block avoids overflow by increasing the
word length by 1 bit after each butterfly multiplication. The bit increase is the same for both
architectures.

Data Types

Rounding Method — Rounding mode for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

This parameter allows you to select the type of rounding mode for internal fixed-point calculations.
For more information about rounding modes, see “Rounding Modes”. When the input is any integer or
fixed-point data type, the IFFT algorithm uses fixed-point arithmetic for internal calculations. This
option does not apply when the input is single or double type. Rounding applies to twiddle factor
multiplication and scaling operations.

Control Ports

Enable reset input port — Optional reset signal
off (default) | on

This parameter enables a reset input port. When you select this parameter, the input reset port
appears on the block icon.

Enable start output port — Optional control signal indicating start of data
off (default) | on

This parameter enables a port that indicates the start of output data. When you select this parameter,
the output start port appears on the block icon.

Enable end output port — Optional control signal indicating end of data
off (default) | on

 IFFT

1-77

This parameter enables a port that indicates the end of output data. When you select this parameter,
the output end port appears on the block icon.

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1

1 Blocks

1-78

bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

 IFFT

1-79

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and input vector size. After you update the model, the block
icon displays the latency. The displayed latency is the number of cycles between the first valid input
and the first valid output, assuming the input is contiguous. To obtain this latency programmatically,
see “Automatic Delay Matching for the Latency of FFT Block”.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

1 Blocks

1-80

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

 IFFT

1-81

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named IFFT HDL Optimized, and was included in the DSP System
Toolbox DSP System Toolbox HDL Support library.

FFT length of 4
Behavior changed in R2022a

This block now supports an FFT length of 4. In previous releases the FFT length had to be a power of
2 from 23 to 216.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

1 Blocks

1-82

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• You cannot generate HDL code for this block inside an Enabled Subsystem.

See Also
Blocks
FFT | Channelizer

Objects
dsphdl.IFFT | dsphdl.FFT

Introduced in R2014a

 IFFT

1-83

Channelizer
Polyphase filter bank and fast Fourier transform
Library: DSP HDL Toolbox / Filtering

Description
The Channelizer block separates a broadband input signal into multiple narrowband output signals. It
provides hardware speed and area optimization for streaming data applications. The block accepts
scalar or vector input of real or complex data, provides hardware-friendly control signals, and has
optional output frame control signals. You can achieve gigasamples-per-second (GSPS) throughput
using vector input. The block implements a polyphase filter, with one subfilter per input vector
element. The hardware implementation interleaves the subfilters, which results in sharing each filter
multiplier (FFT Length / Input Size) times. The FFT implementation uses the same pipelined Radix
2^2 FFT algorithm as the FFT block.

Ports
Input

data — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or a column vector of real or complex values.

The vector size must be a power of 2 and in the range [2, 64], and is not greater than the number of
channels (FFT length).

double and single data types are supported for simulation, but not for HDL code generation.

The block does not accept uint64 data.
Data Types: fixed point | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single |
double

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

reset — Clears internal states
scalar

1 Blocks

1-84

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select the Enable reset input port parameter.
Data Types: Boolean

Output

data — Frequency channel output data
vector

• If you set Output vector size to Same as number of frequency bands (default), the output
data is a 1-by-M vector where M is the FFT length.

• If you set Output vector size to Same as input size, the output data is an M-by-1 vector
where M is the input vector size.

The output order is bit natural for either output size. The output data type is a result of the Filter
output and the bit growth in the FFT necessary to avoid overflow.

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

start — Indicates first valid cycle of output frame
scalar

Control signal that indicates the first valid cycle of the output frame.

When start is 1 (true), the block returns the first valid sample of the frame from the output data
port.

Dependencies

To enable this port, on the Control Ports select the Enable start output port parameter.
Data Types: Boolean

end — Indicates last valid cycle of output frame
scalar

Control signal that indicates the last valid cycle of the output frame.

When end is 1 (true), the block returns the last valid sample of the frame from the output data port.

 Channelizer

1-85

Dependencies

To enable this port, on the Control Ports select the Enable end output port parameter.
Data Types: Boolean

Parameters
Main

Filter coefficients — Polyphase filter coefficients
[-0.032, 0.121, 0.318, 0.482, 0.546, 0.482, 0.318, 0.121, -0.032] (default) |
vector of real or complex numeric values

If the number of coefficients is not a multiple of Number of frequency bands (FFT length), the
block pads this vector with zeros. The default filter specification is a raised-cosine FIR filter,
rcosdesign(0.25,2,4,'sqrt'). You can specify a vector of coefficients or a call to a filter design
function that returns the coefficient values. By default, the block casts the coefficients to the same
data type as the input.

Filter structure — HDL filter architecture
Direct form transposed (default) | Direct form systolic

Specify the HDL filter architecture as one of these structures:

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture”.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

Number of frequency bands (FFT length) — FFT length
8 (default) | integer power of two

For HDL code generation, the FFT length must be a power of 2 from 22 to 216.

Complex multiplication — HDL implementation of complex multipliers
Use 4 multipliers and 2 adders (default) | Use 3 multipliers and 5 adders

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

Output vector size — Size of output data
Same as number of frequency bands (default) | Same as input size

The output data is a vector of M elements. The output order is bit natural for either output size.

• Same as number of frequency bands — Output data is a 1-by-M vector, where M is the FFT
length.

1 Blocks

1-86

• Same as input size — Output data is an M-by-1 vector, where M is the input vector size.

Divide butterfly outputs by two — FFT scaling
on (default) | off

When you select this parameter, the FFT implements an overall 1/N scale factor by scaling the result
of each pipeline stage by 2. This adjustment keeps the output of the FFT in the same amplitude range
as its input. If scaling is disabled, the FFT avoids overflow by increasing the word length by 1 bit at
each stage.

Data Types

Rounding mode — Rounding method used for internal fixed-point calculations
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

See “Rounding Modes”. The block uses fixed-point arithmetic for internal calculations when the input
is any integer or fixed-point data type. This option does not apply when the input is single or
double. Each FFT stage rounds after the twiddle factor multiplication but before the butterflies.
Rounding can also occur when casting the coefficients and the output of the polyphase filter to the
data types you specify.

Saturate on integer overflow — Overflow handling for internal fixed-point calculations
off (default) | on

See “Overflow Handling”. The block uses fixed-point arithmetic for internal calculations when the
input is any integer or fixed-point data type. This option does not apply when the input is single or
double. This option applies to casting the coefficients and the output of the polyphase filter to the
data types you specify.

The FFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled),
or by increasing the word length by 1 bit at each stage (Normalize disabled).

Coefficients — Data type of the filter coefficients
Inherit: Same word length as input (default) | data type expression

The block casts the polyphase filter coefficients to this data type, using the rounding and overflow
settings you specify. When you select Inherit: Same word length as input (default), the block
selects the binary point using fi() best-precision rules.

Filter output — Data type of the output of the polyphase filter
Inherit: Same word length as input (default) | Inherit: via internal rule | data type
expression

The block casts the output of the polyphase filter (the input to the FFT) to this data type, using the
rounding and overflow settings you specify. When you select Inherit: via internal rule, the
block selects a best-precision binary point by considering the values of your filter coefficients and the
range of your input data type.

By default, the FFT logic does not modify the data type. When you disable Divide butterfly outputs
by two, the FFT increases the word length by 1 bit at each stage to avoid overflow.

Control Ports

Enable reset input port — Optional reset signal
off (default) | on

 Channelizer

1-87

When you select this parameter, the reset port shows on the block icon. When the reset input is
true, the block stops calculation and clears all internal state.

Enable start output port — Optional control signal indicating start of data
off (default) | on

When you select this parameter, the start port shows on the block icon. The start signal is true for
the first cycle of output data in a frame.

Enable end output port — Optional control signal indicating end of data
off (default) | on

When you select this parameter, the end port shows on the block icon. The end signal is true for the
last cycle of output data in a frame.

Algorithms
The polyphase filter algorithm requires a subfilter for each FFT channel. For more detail on the
polyphase filter architecture, refer to [1], and to the Channelizer (DSP System Toolbox) block
reference page.

Note The output of this block does not match the output from the Channelizer (DSP System Toolbox)
block sample-for-sample. This mismatch is because the blocks apply the input samples to the
subfilters in different orders. The Channelizer (DSP System Toolbox) block applies input X(0) to
subfilter EM-1(z), X(1) to subfilter EM-2(z), ..., X(M-1) to subfilter E0(z). The channels detected by both
blocks match, when analyzed over multiple frames.

If the input vector size, M, is the same as the FFT length, N, then the block implements N subfilters
in the hardware. Each subfilter is an FIR filter (Direct form transposed or Direct form
systolic) with NumCoeffs/N taps.

1 Blocks

1-88

If the vector size is less than N, the block implements one subfilter for each input vector element. The
subfilter multipliers are shared as necessary to implement N channel filters. The shared multiplier
taps have a lookup table for N/M filter coefficients. Each tap is followed by a delay line of N/M–1
cycles.

The output of the subfilters is cast to the specified Filter output, using the rounding and overflow
settings you chose. Each filter tap in the subfilter is pipelined to target the DSP sections of an FPGA.

 Channelizer

1-89

For instance, for an FFT length of 8, and an input vector size of 4, the block implements four filters.
Each multiplier is shared N/M times, or twice. Each tap applies two coefficients, and the delay line is
N/M–1 cycles.

For scalar input, the block implements one filter. Each multiplier is shared N times. Each tap applies
N coefficients, and the delay line is N–1 cycles.

1 Blocks

1-90

Latency

The latency varies with FFT length, vector size, and filter structure. After you update the model, the
latency is displayed on the block icon. The displayed latency is the number of cycles between the first
valid input and the first valid output, assuming that the input is contiguous. The filter coefficients do
not affect the latency. Setting the output size equal to the input size reduces the latency, because the
samples are not saved and reordered.

Control Signals

This diagram shows validIn and validOut signals for contiguous input data with a vector size of
16, an FFT length of 512, and when you select the Direct form transposed filter architecture. In
this example, the output vector size is specified same as the input vector size.

The diagram also shows the optional startOut and endOut signals that indicate frame boundaries.
When enabled, startOut pulses for one cycle with the first validOut of the frame, and endOut
pulses for one cycle with the last validOut of the frame.

If you apply continuous input frames (no gap in validIn between frames), the output will also be
continuous, after the initial latency.

 Channelizer

1-91

The validIn signal can be noncontiguous. Data accompanied by a validIn signal is stored until a
frame is filled. Then the data in output is a contiguous frame of N/M cycles. This diagram shows
noncontiguous input and contiguous output for an FFT length of 512 and a vector size of 16 samples.

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to a Xilinx Zynq- 7000 ZC706 evaluation board. The three examples in the tables use this
common configuration.

• FFT length (default) — 8
• Filter length — 96 coefficients
• Filter structure — Direct form transposed
• 16-bit complex input data
• Coefficient data type — Same word length as input
• Filter output data type — Same word length as input
• Complex multiplication — Use 4 multipliers and 2 adders
• Output scaling — Enabled
• Output vector size — Same as input size

Performance of the synthesized HDL code varies with your target and synthesis options.

For scalar input, the design achieves a clock frequency of 506.84 MHz. The latency is 51 cycles. The
subfilters share each multiplier eight (N) times. The design uses these resources.

Resource Number Used
LUT 2898
FFS 3746
Xilinx LogiCORE DSP48 28

For four-sample vector input, the design achieves a clock frequency of 452 MHz. The latency is 37
cycles. The subfilters share each multiplier twice (N/M). The design uses these resources.

Resource Number Used
LUT 1991
FFS 8305
Xilinx LogiCORE DSP48 104

For eight-sample vector input, the design achieves a clock frequency of 360 MHz. The latency is 18
cycles. When the input size is the same as the FFT length, the subfilters do not share any multipliers.
The design uses these resources.

1 Blocks

1-92

Resource Number Used
LUT 1683
FFS 2992
Xilinx LogiCORE DSP48 208

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named Channelizer HDL Optimized, and was included in the DSP
System Toolbox DSP System Toolbox HDL Support library.

The block now supports fully parallel systolic architecture when you set the Filter structure
parameter to Direct form systolic.

FFT length of 4
Behavior changed in R2022a

This block now supports an FFT length of 4. In previous releases the FFT length had to be a power of
2 from 23 to 216.

Direct form systolic filter structure support
Behavior changed in R2022a

This block now supports direct form systolic filter structure.

References
[1] Harris, F. J., C. Dick, and M. Rice. “Digital Receivers and Transmitters Using Polyphase Filter

Banks for Wireless Communications.” IEEE Transactions on Microwave Theory and
Techniques. Vol. 51, No. 4, April 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Architecture

This block has a single, default HDL architecture.

 Channelizer

1-93

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
Channel Synthesizer | FFT

Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer

Topics
“High-Throughput HDL Algorithms”

Introduced in R2017a

1 Blocks

1-94

FIR Decimator
Finite impulse response (FIR) decimation filter
Library: DSP HDL Toolbox / Filtering

Description
The FIR Decimator block implements a single-rate polyphase FIR decimation filter that is optimized
for HDL code generation. The block provides a hardware-friendly interface with input and output
control signals. To provide a cycle-accurate simulation of the generated HDL code, the block models
architectural latency including pipeline registers and resource sharing.

The block accepts scalar or vector input. When you use vector input and the vector size is less than
the decimation factor, the decimation factor must be an integer multiple of the vector size. In this
case, the output is scalar and an output valid signal indicates which samples are valid after
decimation. The output data is valid every DecimationFactor/VectorSize samples. The waveform
shows an input vector of four samples and a decimation factor of eight. The output data is a scalar
that is valid every second cycle.

When you use vector input and the vector size is greater than the decimation factor, the vector size
must be an integer multiple of the decimation factor. In this case, the output is a vector of VectorSize/
DecimationFactor samples. The waveform shows an input vector of eight samples and a decimation
factor of four. The output data is a vector of two samples on every cycle.

The block provides two filter structures. The direct form systolic architecture provides an
implementation that makes efficient use of Intel and Xilinx DSP blocks. This architecture can be fully
parallel or serial. To use a serial architecture, the input samples must be spaced out with a regular
number of invalid cycles between the valid samples. The direct form transposed architecture is a fully
parallel implementation that is suitable for FPGA and ASIC applications. For a filter implementation
that matches multipliers, pipeline registers, and pre-adders to the DSP configuration of your FPGA
vendor, specify your target device when you generate HDL code.

 FIR Decimator

1-95

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

The block implements one filter for each sample in the input vector. The block then shares this filter
between the polyphase subfilters by interleaving the subfilter coefficients in time.

Ports
Input

data — Input data
scalar | vector

Input data must be a real- or complex-valued scalar or vector. When you use vector input and the
vector size is less than the decimation factor, the decimation factor must be an integer multiple of the
vector size. When you use vector input and the vector size is greater than the decimation factor, the
vector size must be an integer multiple of the decimation factor. The vector size must be less than or
equal to 64.

When the input data type is an integer type or a fixed-point type, the block uses fixed-point arithmetic
for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean

Output

data — Filtered output data
scalar

1 Blocks

1-96

Filtered output data, returned as a real- or complex-valued scalar. When the input data type is a
floating-point type, the output data inherits the data type of the input data. When the input data type
is an integer type or a fixed-point type, the Output parameter on the Data Types tab specifies the
output data type.

The output valid signal indicates which samples are valid after decimation. When the input vector
size is greater than the decimation factor, the output is a vector of VectorSize/DecimationFactor
samples.
Data Types: fixed point | single | double

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

Parameters
Main

Coefficients — FIR filter coefficients
fir1(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the block casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can set the data type for the coefficients on the Data Types
tab.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients using a linear-phase
filter design function.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed

The block implements a polyphase decomposition filter by using Discrete FIR Filter blocks. Both
structures share resources by interleaving the subfilter coefficients over one filter implementation for
each sample in the input vector. Specify the HDL filter architecture as one of these structures:

• Direct form systolic — This architecture provides a parallel or partly-serial filter
implementation that makes efficient use of Intel and Xilinx DSP blocks. For a partly-serial
implementation, specify a value greater than 1 for the Minimum number of cycles between
valid input samples parameter. You cannot use frame-based input with the partly-serial
architecture.

When Minimum number of cycles between valid input samples is greater than 1, the block
chooses a filter architecture that results in the fewest multipliers. If N allows for a single
multiplier in each subfilter, then the block implements a single serial filter and decimates the
output samples.

 FIR Decimator

1-97

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications.

All implementations share resources by interleaving the subfilter coefficients over one filter
implementation for each sample in the input vector.

The block implements a polyphase decomposition filter using Discrete FIR Filter blocks. For
architecture details, see “FIR Filter Architectures for FPGAs and ASICs”.

Decimation factor — Decimation factor
2 (default) | integer greater than two

Specify an integer decimation factor greater than two. When you use vector input and the vector size
is less than the decimation factor, the decimation factor must be an integer multiple of the vector
size. When you use vector input and the vector size is greater than the decimation factor, the vector
size must be an integer multiple of the decimation factor.

Minimum number of cycles between valid input samples — Serialization requirement
for input timing
1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. To implement a fully serial
architecture, set Minimum number of cycles between valid input samples greater than the filter
length, L, or to Inf.

The block applies coefficient optimizations before serialization, so the sharing factor of the final filter
can be lower than the number of cycles that you specified.

Dependencies

To enable this parameter, set Filter structure to Direct form systolic.

You cannot use frame-based input with Minimum number of cycles between valid input samples
greater than 1.

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of filter coefficients
Inherit: Same word length as input (default) | <data type expression>

1 Blocks

1-98

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.

The block returns a warning or error if either of these conditions occur.

• The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

• The coefficients data type is unsigned, and the coefficients include negative values.

Output — Data type of filter output
Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

 FIR Decimator

1-99

Algorithms
The block implements a polyphase filter bank where the filter coefficients are decomposed into
Decimation factor subfilters. If the filter length is not divisible by the Decimation factor
parameter value, then the block zero-pads the coefficients.

The diagram shows the polyphase filter bank with scalar input, the Decimation factor parameter set
to 4, and Minimum number of cycles between valid input samples set to 1. The four sets of
decomposed coefficients are interleaved in time over a single subfilter. The output data sample is
valid every 4 cycles.

With an input vector size greater than the decimation factor, the block implements the same
interleaved filter but with frame-based input. The output vector has VectorSize/DecimationFactor
samples.

The next diagram shows the polyphase filter bank for an input vector size smaller than the
decimation factor. This filter has an input vector of four values and the Decimation factor parameter
set to eight. Each of the four subfilters has two sets of coefficients interleaved in time.

1 Blocks

1-100

When the filter has Minimum number of cycles between valid input samples greater than one
and less than the number of filter coefficients, the block implements a polyphase filter with
DecimationFactor subfilters. This diagram shows input data with a valid sample every second cycle
and a DecimationFactor of 4. The output data has one valid sample every eight cycles.

 FIR Decimator

1-101

When the filter has Minimum number of cycles between valid input samples greater than the
number of filter coefficients, the block implements a single fully serial filter and decimates the output
samples by the decimation factor.

Each subfilter is implemented with a Discrete FIR Filter block. The adder at the output is pipelined to
accommodate higher synthesis frequencies. For architecture details, see “FIR Filter Architectures for
FPGAs and ASICs”.

Note The output of the FIR Decimator block does not match the output from the FIR Decimation
block from DSP System Toolbox sample-for-sample. This difference is mainly because of the phase
that the samples are applied across the subfilters. To match the FIR Decimation block, apply
Decimation factor – 1 zeros to the FIR Decimator block at the start of the data stream.

The FIR Decimation block also uses slightly different data types for full-precision calculations. The
different data types can also introduce differences in output values if the values overflow the internal
data types.

1 Blocks

1-102

Performance

This table shows the post-synthesis resource utilization for the HDL code generated for the default
FIR decimation filter using scalar input, a decimation factor of eight, 16-bit input, and 16-bit
coefficients. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset
type parameter is Synchronous, and the Minimize clock enables parameter is selected. The reset
port is disabled, so only the control path registers are connected to the generated global HDL reset.

Resource Uses
LUT 676
Slice Reg 878
Slice 257
Xilinx LogiCORE DSP48 5

After place and route, the maximum clock frequency of the design is 526 MHz.

For the same filter with a four-element input vector, the filter uses these resources.

Resource Uses
LUT 322
Slice Reg 2351
Slice 502
Xilinx LogiCORE DSP48 20

After place and route, the maximum clock frequency of the design is 518 MHz.

For the same filter with scalar input and numCycles set to four, the filter uses these resources.

Resource Uses
LUT 835
Slice Reg 1341
Xilinx LogiCORE DSP48 8

After place and route, the maximum clock frequency of the design is 460 MHz.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FIR Decimation HDL Optimized, and was included in the DSP
System Toolbox DSP System Toolbox HDL Support library.

Serial systolic architecture

This block now supports partly and fully serial systolic architecture. This architecture enables you to
share hardware resources if there is a regular pattern of invalid cycles between valid input samples.
To use the serial systolic architecture, set Filter structure to Direct form systolic and

 FIR Decimator

1-103

Minimum number of cycles between valid input samples to a value greater than 1. You cannot
use frame-based input with the serial architecture.

Input vector size can be greater than decimation factor

In previous releases, the block did not support input vector sizes greater than the decimation factor.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

The FIR Decimator block does not support resource sharing optimization through HDL Coder
settings. Instead, set the Filter structure parameter to Partly serial systolic, and configure
a serialization factor based on either input timing or resource usage.

See Also
Objects
dsphdl.FIRDecimator | dsphdl.FIRFilter

Blocks
Discrete FIR Filter

Introduced in R2020b

1 Blocks

1-104

FIR Interpolator
Finite impulse response (FIR) interpolation filter
Library: DSP HDL Toolbox / Filtering

Description
The FIR Interpolator block implements a single-rate polyphase FIR interpolation filter that is
optimized for HDL code generation. The block provides a hardware-friendly interface with input and
output control signals. To provide a cycle-accurate simulation of the generated HDL code, the block
models architectural latency including pipeline registers and resource sharing.

The block accepts scalar or vector input and outputs a scalar or vector depending on the
interpolation factor and the number of cycles between input samples. The block implements a
polyphase decomposition with InterpolationFactor subfilters. Each subfilter can implement a serial
architecture if there is regular spacing between input samples.

The block provides two filter structures. The direct form systolic architecture provides an
implementation that makes efficient use of Intel and Xilinx DSP blocks. This architecture can be fully-
parallel or serial. To use a serial architecture, the input samples must be spaced out with a regular
number of invalid cycles between the valid samples. The direct form transposed architecture is a fully
parallel implementation that is suitable for FPGA and ASIC applications. For a filter implementation
that matches multipliers, pipeline registers, and pre-adders to the DSP configuration of your FPGA
vendor, specify your target device when you generate HDL code.

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

Ports
Input

data — Input data
real or complex scalar or vector

Input data, specified as a real or complex scalar or vector. The vector size must be less than or equal
to 64. When the input data type is an integer type or a fixed-point type, the block uses fixed-point
arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid input data
scalar

 FIR Interpolator

1-105

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

reset — Clears internal states
scalar

Control signal that clears internal states. When reset is 1 (true), the block stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this port, on the Control Ports tab, select Enable reset input port.
Data Types: Boolean

Output

data — Interpolated output data
real or complex scalar or vector

Interpolated output data, returned as a real or complex scalar or vector. The vector size is InputSize *
InterpolationFactor. When NumCycles is greater than InterpolationFactor, scalar output samples are
spaced with floor(NumCycles/InterpolationFactor) invalid cycles, and the output valid
signal indicates which samples are valid after interpolation.

When the input data type is a floating-point type, the output data inherits the data type of the input
data. When the input data type is an integer type or a fixed-point type, the Output parameter on the
Data Types tab controls the output data type.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.
Data Types: Boolean

1 Blocks

1-106

Parameters
Main

Coefficients — FIR filter coefficients
fir1(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the block casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can set the data type for the coefficients on the Data Types
tab.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients by using a linear-phase
filter design function.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Filter structure — HDL filter architecture
Direct form systolic (default) | Direct form transposed

Specify the HDL filter architecture as one of these structures:

• Direct form systolic — This architecture provides a parallel or partly serial filter
implementation that makes efficient use of Intel and Xilinx DSP HDL blocks. For a partly serial
implementation, specify a value greater than 1 for the Minimum number of cycles between
valid input samples parameter. You cannot use frame-based input with the partly serial
architecture.

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications.

The block implements a polyphase decomposition filter by using Discrete FIR Filter blocks. Each filter
phase shares resources internally where coefficients and serial options allow. For architecture details,
see “FIR Filter Architectures for FPGAs and ASICs”.

Interpolation factor — Interpolation factor
2 (default) | integer greater than two

Specify an integer interpolation factor greater than two. The output vector size is InputSize *
InterpolationFactor. The output vector size must be less than 64 samples.

Minimum number of cycles between valid input samples — Serialization requirement
for input timing
1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This parameter represents
N, the minimum number of cycles between valid input samples. When you set Minimum number of
cycles between valid input samples greater than the filter length, L, and the input and coefficients
are both real, the filter uses Interpolation factor multipliers.

Because the block applies coefficient optimizations before serialization, the sharing factor of the final
filter can be lower than the number of cycles that you specified.
Dependencies

To enable this parameter, set Filter structure to Direct form systolic.

 FIR Interpolator

1-107

You cannot use frame-based input with Minimum number of cycles between valid input samples
greater than 1.

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output to the data type specified by the Output parameter. When
the input data type is floating point, the block ignores this parameter. For more details, see
“Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output to the data type specified by the Output parameter.
When the input data type is floating point, the block ignores this parameter. For more details, see
“Overflow Handling”.

Coefficients — Data type of filter coefficients
Inherit: Same word length as input (default) | <data type expression>

The block casts the filter coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The recommended data type for this parameter is Inherit: Same word length as input.

The block returns a warning or error if either of these conditions occur.

• The coefficients data type does not have enough fractional length to represent the coefficients
accurately.

• The coefficients data type is unsigned, and the coefficients include negative values.

Output — Data type of filter output
Inherit: Inherit via internal rule (default) | Inherit: Same word length as input |
<data type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Overflow mode parameters. When the input data type is floating point, the
block ignores this parameter.

The block increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Ports

Enable reset input port — Option to enable reset input port
off (default) | on

1 Blocks

1-108

Select this parameter to enable the reset input port. The reset signal implements a local synchronous
reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Use HDL global reset — Option to connect data path registers to generated HDL global
reset signal
off (default) | on

Select this parameter to connect the generated HDL global reset signal to the data path registers.
This parameter does not change the appearance of the block or modify simulation behavior in
Simulink. When you clear this parameter, the generated HDL global reset clears only the control path
registers. The generated HDL global reset can be synchronous or asynchronous depending on the
HDL Code Generation > Global Settings > Reset type parameter in the model Configuration
Parameters.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Algorithms
The block implements a polyphase filter bank where the filter coefficients are decomposed into
Interpolation factor subfilters. If the filter length is not divisible by the Interpolation factor
parameter value, then the block zero-pads the coefficients.

The diagram shows the polyphase filter bank with scalar input and the Interpolation factor
parameter set to four. Each subfilter contributes one sample to the output vector. When you set
Minimum number of cycles between valid input samples greater than 1, the block passes the
NumCycles value to the FIR filters for each phase, and each FIR filter implements a partly-serial
architectures.

 FIR Interpolator

1-109

The next diagram shows the polyphase filter bank for an input vector of two values and the
Interpolation factor parameter set to four. Each of the four subfilters generates two samples of the
output vector.

1 Blocks

1-110

Each subfilter is implemented with a Discrete FIR Filter block. For architecture details, see “FIR
Filter Architectures for FPGAs and ASICs”.

Performance

This table shows the post-synthesis resource utilization for the HDL code generated for the default
FIR interpolation filter using scalar input, an interpolation factor of two, 16-bit input, and 16-bit
coefficients. The synthesis targets a Xilinx ZC-706 (XC7Z045ffg900-2) FPGA. The Global HDL reset
type parameter is Synchronous, and the Minimize clock enables parameter is selected. The reset
port is disabled, so only the control path registers are connected to the generated global HDL reset.

Resource Uses
LUT 18
FF 353
BRAM 0
Xilinx LogiCORE DSP48 72

After place and route, the maximum clock frequency of the design is 455 MHz.

For the same filter configuration but with a four-element input vector, the filter uses these resources.

Resource Uses
LUT 2080

 FIR Interpolator

1-111

Resource Uses
FF 6416
BRAM 0
Xilinx LogiCORE DSP48 288

After place and route, the maximum clock frequency of the design is 385 MHz.

For a design with scalar input, an interpolation factor of four, and Minimum number of cycles
between valid input samples set to four, the filter uses these resources. You can see the effect of
sharing filter resources over the invalid cycles between input samples.

Resource Uses
LUT 1100
FF 2258
BRAM 0
Xilinx LogiCORE DSP48 24

After place and route, the maximum clock frequency of the design is 540 MHz.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1 Blocks

1-112

See Also
Blocks
FIR Decimator | Discrete FIR Filter

Objects
dsphdl.FIRInterpolator

Introduced in R2022a

 FIR Interpolator

1-113

FIR Rate Converter
Upsample, filter, and downsample input signal
Library: DSP HDL Toolbox / Filtering

Description
The FIR Rate Converter block upsamples, filters, and downsamples input signals. It is optimized for
HDL code generation and operates on one sample of each channel at a time. The block implements a
polyphase architecture to avoid unnecessary arithmetic operations and high intermediate sample
rates.

The block upsamples the input signal by an integer factor of L, applies it to a FIR filter, and
downsamples the input signal by an integer factor of M.

You can use the input and output control ports to pace the flow of samples. In the default
configuration, the block uses input and output valid control signals. For additional flow control, you
can enable a ready output signal.

The ready output port indicates that the block can accept a new input data sample on the next time
step. When L ≥ M, you can use the ready signal to achieve continuous output data samples. If you
apply a new input sample after each time the block returns ready signal as 1, the block returns a
data output sample with the output valid signal set to 1 on every time step.

When you disable the ready port, you can apply a valid data sample only every ceil(L/M) time
steps. For example, if:

• L/M = 4/5, then you can apply a new input sample on every time step.
• L/M = 3/2, then you can apply a new input sample on every other time step.

Ports
Input

data — Input data sample
scalar | row vector

Input data sample, specified as a scalar, or as a row vector in which each element represents an
independent channel. The block accepts real or complex data.

1 Blocks

1-114

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

You can apply a valid data sample every ceiling(L/M) time steps.
Data Types: Boolean

Output

data — Output data sample
scalar | row vector

Output data sample, returned as a scalar or a row vector in which each element represents an
independent channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

Dependencies

To enable this port, select the Enable ready output port checkbox.
Data Types: Boolean

Parameters
Main

Interpolation factor — Interpolation factor
3 (default) | positive integer

Specify a factor by which the block interpolates the input data sample.

 FIR Rate Converter

1-115

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive integer

Specify a factor by which the block decimates the input data sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FIR filter coefficients — FIR filter coefficients
firpm(70, [0 0.28 0.32 1],[1 1 0 0]) (default) | row vector

Specify a row vector of coefficients in descending powers of z-1.

Note You can generate filter coefficients using Signal Processing Toolbox™ filter design functions
(such as fir1). Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The block initializes internal filter states to zero.

Data Types

Rounding mode — Rounding mode for fixed-point operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Select a rounding mode for fixed-point operations. For more information, see Rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that data type can represent. For example,
because 130 does not fit in a signed 8-bit integer, it wraps to -126.

• on — Overflows saturate to either the minimum or maximum value that data type can represent.
For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Coefficients Data Type — FIR filter coefficients data type
fixdt(1,16,16) (default)

FIR filter coefficients data type, specified as a fixdt(s,wl,fl) object with signedness, word
length, and fractional length properties.

Output Data Type — Data type of output data sample
Inherit: Same word length as input (default) | Inherit via internal rule |
fixdt(s,wl,fl)

Specify the data type for the output data samples.

Control Ports

Enable ready output port — Option to enable ready control signal
off (default) | on

Select this parameter to enable the ready port.

1 Blocks

1-116

Algorithms
The FIR Rate Converter block implements a fully parallel polyphase filter architecture. The diagram
shows where the block casts the data types based on your configuration.

Delay

Because the block models HDL pipeline latency, an initial delay of several time steps exists before the
block returns the first valid output data sample. The latency depends on the filter coefficients and the
resampling factors. To determine the latency from the first input data sample to the first output data
sample, measure the cycles between asserting the input valid signal and the output valid signal
going high.

Performance

For an example of design performance, generate HDL for the block as configured in the “Control Data
Rate Using Ready Signal” example. The example filter resamples at 5/2, and uses a symmetric 71-tap
filter. The input samples and filter coefficients are 16 bits wide. The design is targeted to a Xilinx
Virtex-6 FPGA, using Xilinx ISE synthesis and place and route tools.

After placement and routing, the design achieves 535 MHz clock frequency and uses these resources
of the FPGA device.

LUT 592
FFS 979
Xilinx LogiCORE DSP48 15
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your filter coefficients, FPGA target,
and synthesis options.

 FIR Rate Converter

1-117

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FIR Rate Conversion HDL Optimized, and was included in the
DSP System Toolbox DSP System Toolbox HDL Support library.

Remove request port
Behavior changed in R2022a

In previous releases, the block provided an optional request port. This port is no longer available.
For an alternate way to control the data rate in your model, see “Control Data Rate Using Ready
Signal”.

Synchronous ready signal
Behavior changed in R2022a

In previous releases, the ready output signal was direct feedthrough without an output pipeline
register. This signal is now pipelined at the output of the block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

1 Blocks

1-118

See Also
Blocks
FIR Rate Conversion

Objects
dsphdl.FIRRateConverter

Introduced in R2015b

 FIR Rate Converter

1-119

FIR Rate Converter (Obsolete)
Upsample, filter, and downsample input signal (with request port)

Description
The FIR Rate Converter block upsamples, filters, and downsamples input signals. It is optimized for
HDL code generation and operates on one sample of each channel at a time. The block implements a
polyphase architecture to avoid unnecessary arithmetic operations and high intermediate sample
rates.

The block upsamples the input signal by an integer factor of L, applies it to a FIR filter, and
downsamples the input signal by an integer factor of M.

You can use the input and output control ports for pacing the flow of samples. In the default
configuration, the block uses input and output valid control signals. The block has a request port to
control the output rate. For input flow control, you can enable a ready output signal.

The ready output port indicates that the block can accept a new input data sample on the next time
step. When L ≥ M, you can use the ready signal to achieve continuous output data samples. If you
apply a new input sample after each time the block returns ready signal as 1, the block returns a
data output sample with the output valid signal set to 1 on every time step.

When you disable the ready port, you can apply a valid data sample only every ceil(L/M) time
steps. For example, if:

• L/M = 4/5, then you can apply a new input sample on every time step.

1 Blocks

1-120

• L/M = 3/2, then you can apply a new input sample on every other time step.

The block returns the next output sample one cycle after the request signal is 1 and a valid output
sample is available. When no new data is available, block sets the output valid signal to 0.

You can connect the request input port to the ready output port of a downstream block.

Ports
Input

data — Input data sample
scalar | row vector

Input data sample, specified as a scalar, or as a row vector in which each element represents an
independent channel. The block accepts real or complex data.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.

You can apply a valid data sample every ceiling(L/M) time steps.
Data Types: Boolean

request — Request control signal
scalar

When the request port is 1, and an output data sample is available, on the next cycle the block
returns that output data sample on the output data port and sets the output valid signal to 1. When
no new data is available, the block sets the output valid signal to 0. When the request port is 0, the
block holds available data until the request port is set to 1.

You can connect the request input port to the ready output port of a downstream block.
Data Types: Boolean

Output

data — Output data sample
scalar | row vector

Output data sample, returned as a scalar or a row vector in which each element represents an
independent channel.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 FIR Rate Converter (Obsolete)

1-121

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

ready — Indicates block is ready for new input data
scalar

Control signal that indicates that the block is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the block ignores any input data in the next time step.

You can connect the ready output port to the request input port of an upstream block.

Dependencies

To enable this port, select the Enable ready output port checkbox.
Data Types: Boolean

Parameters
Main

Interpolation factor — Interpolation factor
3 (default) | positive integer

Specify a factor by which the block interpolates the input data sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Decimation factor — Decimation factor
2 (default) | positive integer

Specify a factor by which the block decimates the input data sample.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FIR filter coefficients — FIR filter coefficients
firpm(70, [0 0.28 0.32 1],[1 1 0 0]) (default) | row vector

Specify a row vector of coefficients in descending powers of z-1.

Note You can generate filter coefficients using Signal Processing Toolbox filter design functions
(such as fir1). Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The block initializes internal filter states to zero.

Data Types

Rounding mode — Rounding mode for fixed-point operation
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

1 Blocks

1-122

Select a rounding mode for fixed-point operations. For more information, see Rounding mode.

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that data type can represent. For example,
because 130 does not fit in a signed 8-bit integer, it wraps to -126.

• on — Overflows saturate to either the minimum or maximum value that data type can represent.
For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Coefficients Data Type — FIR filter coefficients data type
fixdt(1,16,16) (default)

FIR filter coefficients data type, specified as a fixdt(s,wl,fl) object with signedness, word
length, and fractional length properties.

Output Data Type — Data type of output data sample
Inherit: Same word length as input (default) | Inherit via internal rule |
fixdt(s,wl,fl)

Specify the data type for the output data samples.

Control Ports

Enable ready output port — Option to enable ready control signal
off (default) | on

Select this parameter to enable the ready port.

Algorithms
The FIR Rate Converter block implements a fully parallel polyphase filter architecture. The diagram
shows where the block casts the data types based on your configuration.

 FIR Rate Converter (Obsolete)

1-123

Delay

Because the block models HDL pipeline latency, an initial delay of several time steps exists before the
block returns the first valid output data sample. The latency depends on the filter coefficients and the
resampling factors. To determine the latency from the first input data sample to the first output data
sample, measure the cycles between asserting the input valid signal and the output valid signal
going high.

Performance

For an example of design performance, generate HDL for the block as configured in the “Control Data
Rate Using Ready Signal” example. The example filter resamples at 5/2, and uses a symmetric 71-tap
filter. The input samples and filter coefficients are 16 bits wide. The design is targeted to a Xilinx
Virtex-6 FPGA, using Xilinx ISE synthesis and place and route tools.

After placement and routing, the design achieves 535 MHz clock frequency and uses these resources
of the FPGA device.

LUT 592
FFS 979
Xilinx LogiCORE DSP48 15
Block RAM (16K) 0

Performance of the synthesized HDL code varies depending on your filter coefficients, FPGA target,
and synthesis options.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named FIR Rate Conversion HDL Optimized, and was included in the
DSP System Toolbox DSP System Toolbox HDL Support library.

Remove request port in future release
Behavior changed in R2022a

The request port on the FIR Rate Converter block is no longer supported. Existing instances of the
FIR Rate Converter block that use the request port are forwarded to this block, which has a
nonoptional request port. This block will be removed in a future release.

Instead, use the FIR Rate Converter block without the request port, and control the input data rate
by using a FIFO outside the block. See “Control Data Rate Using Ready Signal”.

One cycle latency between request and validOut
Behavior changed in R2022a

This block now has a register on the request input port. This register means there is one cycle
latency between setting request to 1 (true) and the block returning data on the dataOut and
validOut ports.

1 Blocks

1-124

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

See Also
Blocks
FIR Rate Converter

Objects
dsphdl.FIRRateConverter

Introduced in R2015b

 FIR Rate Converter (Obsolete)

1-125

Complex to Magnitude-Angle
Compute magnitude and phase angle of complex signal using CORDIC algorithm
Library: DSP HDL Toolbox / Math Functions

Description
The Complex to Magnitude-Angle block computes the magnitude and phase angle of a complex signal
and provides hardware-friendly control signals. To achieve an efficient HDL implementation, the
block uses a pipelined Coordinate Rotation Digital Computer (CORDIC) algorithm.

You can use this block to implement operations such as atan2 in hardware.

Ports
Input

data — Complex input signal
scalar | vector

Complex input signal, specified as a scalar, a column vector representing samples in time, or a row
vector representing channels. Using vector input increases data throughput while using more
hardware resources. The block implements the conversion logic in parallel for each element of the
vector. The input vector can contain up to 64 elements.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

Output

Magnitude — Magnitude of the input signal
scalar | vector

Magnitude of the input signal, returned as a scalar, a column vector representing samples in time, or
a row vector representing channels. The dimensions of this port match the dimensions of the input
data port.

1 Blocks

1-126

Dependencies

To enable this port, set the Output format parameter to Magnitude and Angle or Magnitude.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

Angle — Angle of the input signal
scalar | vector

Angle of the input signal, returned as a scalar, a column vector representing samples in time, or a row
vector representing channels. The dimensions of this port match the dimensions of the input data
port.

Dependencies

To enable this port, set the Output format parameter to Magnitude and Angle or Angle.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the Magnitude and/or Angle ports. When valid is 0 (false), the
values from the Magnitude and/or Angle ports are not valid.
Data Types: Boolean

Parameters
Number of iterations source — Source of number of iterations
Auto (default) | Property

• To set the number of iterations to input WL − 1, select Auto. If the input is of data type double or
single, the number of iterations is set to 16, by default.

• To specify the number of iterations by using Number of iterations parameter, select Property.

Number of iterations — Number of CORDIC iterations
positive integer

The number of iterations must be less than or equal to input WL − 1. The latency of the block
depends on the number of iterations performed. For information about latency, see “Latency” on page
1-132.

Dependencies

To enable this parameter, set Number of iterations source to Property.

Output format — Output signal format
Magnitude and Angle (default) | Magnitude | Angle

Use this parameter to specify which output ports are enabled.

• To enable the Magnitude and Angle output ports, select Magnitude and Angle (default).

 Complex to Magnitude-Angle

1-127

• To enable the Magnitude output port and disable the Angle output port, select Magnitude.
• To enable the Angle output port and disable the Magnitude output port, select Angle.

Angle format — Output angle format
Normalized (default) | Radians

• To return the Angle output as a fixed-point value that normalizes the angles in the range [–1,1],
select Normalized. For more information see “Normalized Angle Format” on page 1-131.

• To return the Angle output as a fixed-point value in the range [-π, π], select Radians. When using
this block to implement the atan2 function, set this parameter to Radians.

Scale output — Scales output
on (default) | off

Select this parameter to multiply the Angle output by the inverse of the CORDIC gain factor. The
block implements this gain factor with either CSD logic or a multiplier, according to the Scaling
method parameter.

Note If you clear this parameter and apply the CORDIC gain elsewhere in your design, you must
exclude the π/4 term. Because the quadrant mapping algorithm replaces the first CORDIC iteration
by mapping inputs onto the angle range [0, π/4], the initial rotation does not contribute a gain term.
The gain factor is the product of cos(atan(2-n)), for n from 1 to Number of iterations – 1.

Scaling method — Implementation of CORDIC gain scaling
CSD (default) | Multipliers

When you set this parameter to CSD, the block implements the CORDIC gain scaling by using a shift-
and-add architecture for the multiply operation. This implementation uses no multiplier resources
and may increase the length of the critical path in your design. When you select Multipliers, the
block implements the CORDIC gain scaling with a multiplier and increases the latency of the block by
four cycles.

Dependencies

To enable this parameter, select the Scale output parameter.

Algorithms
CORDIC Algorithm

The CORDIC algorithm is a hardware-friendly method for performing trigonometric functions. It is an
iterative algorithm that approximates the solution by converging toward the ideal point. The block
uses CORDIC vectoring mode to iteratively rotate the input onto the real axis.

Givens method for rotating a complex number x+iy by an angle θ is as follows. The direction of
rotation, d, is +1 for counterclockwise and −1 for clockwise.

xr = xcosθ− dysinθ
yr = ycosθ + dxsinθ

For a hardware implementation, factor out the cosθ to leave a tanθ term.

1 Blocks

1-128

xr = cosθ x− dytanθ
yr = cosθ y + dxtanθ

To rotate the vector onto the real axis, choose a series of rotations of θn so that tanθn = 2−n. Remove
the cosθ term so each iterative rotation uses only shift and add operations.

Rxn = xn− 1− dnyn− 12−n

Ryn = yn− 1 + dnxn− 12−n

Combine the missing cosθ terms from each iteration into a constant, and apply it with a single
multiplier to the result of the final rotation. The output magnitude is the scaled final value of x. The
output angle, z, is the sum of the rotation angles.

xr = cosθ0cosθ1...cosθn RxN

z = ∑
0

N
dnθn

Modified CORDIC Algorithm

The convergence region for the standard CORDIC rotation is ≈±99.7°. To work around this limitation,
before doing any rotation, the block maps the input into the [0, π/4] range using this algorithm.

if abs(x) > abs(y)
 input_mapped = [abs(x), abs(y)];
else
 input_mapped = [abs(y), abs(x)];
end

At each iteration, the block rotates the vector towards the real axis. The rotation is counterclockwise
when y is negative, and clockwise when y is positive.

Quadrant mapping saves hardware resources and reduces latency by reducing the number of
CORDIC pipeline stages by one. The CORDIC gain factor, Kn, therefore does not include the n=0, or
cos(π/4)term.

Kn = cosθ1...cosθn = cos(26.565) ⋅ cos(14.036) ⋅ cos(7.125) ⋅ cos(3.576)

After the CORDIC iterations are complete, the block adjusts the angle back to its original location.
First it adjusts the angle to the correct side of π/4.

if abs(x) > abs(y)
 angle_unmapped = CORDIC_out;
else
 angle_unmapped = (pi/2) - CORDIC_out;
end

Then, the block flips the angle to the original quadrant.

if (x < 0)
 if (y < 0)
 output_angle = - pi + angle_unmapped;
 else
 output_angle = pi - angle_unmapped;
else

 Complex to Magnitude-Angle

1-129

 if (y<0)
 output_angle = -angle_unmapped;

Architecture

The block generates a pipelined HDL architecture to maximize throughput. Each CORDIC iteration is
done in one pipeline stage. The gain factor, if enabled, is implemented with canonical signed digit
(CSD) logic by default. Set the Scaling method parameter to Multipliers to implement the gain
factor with a multiplier.

If you use vector input, this block replicates this architecture in parallel for each element of the
vector.

The following table shows Magnitude and Angle output word length (WL), for particular input word
length (WL). FL stands for fractional length used in fixed-point representation.

Input Word Length Output Magnitude Word Length
fixdt(0,WL,FL) fixdt(0,WL + 2,FL)
fixdt(1,WL,FL) fixdt(1,WL + 1,FL)

Input Word Length Output Angle Word Length
fixdt([],WL,FL) Radians fixdt(1,WL + 3,WL)

Normalized fixdt(1,WL + 3,WL+2)

The CORDIC logic at each pipeline stage implements one iteration. For each pipeline stage, the shift
and angle rotation are constants.

1 Blocks

1-130

When you set Output format to Magnitude, the block does not generate HDL code for the angle
accumulation and quadrant correction logic.

Normalized Angle Format

This format normalizes the fixed-point radian angle values around the unit circle. This use of bits can
be more efficient than the use of the range [0, 2π] radians. Also this normalized angle format enables
wraparound of angle at 0 or 2π without additional detect and correct logic.

For example, representing the angle with 3 bits results in these normalized values.

 Complex to Magnitude-Angle

1-131

The block normalizes the angles across [0, π/4] and maps them to the correct octant at the end of the
calculation.

Latency

When the valid input is applied, the block returns valid output after Number of iterations + 4
cycles. The latency is displayed on the block mask.

When you set the Number of iterations source parameter to Property, the block shows the
latency immediately. When you set Number of iterations source to Auto, the block calculates the
latency based on the input port data type and displays the latency when you update the model.

When you set the Number of iterations source parameter to Auto, the number of iterations is
input WL − 1, and the latency is input WL + 3. If the input is of data type double or single, the
number of iterations is 16, and the latency is 20.

Note When you set the Scaling method parameter to Multipliers, the block latency increases by
four cycles.

Performance

Performance was measured for the default configuration, with output scaling disabled and
fixdt(1,16,12) input. When the generated HDL code is synthesized into a Xilinx ZC706
(XC7Z045FFG900-2) FPGA, the design achieves 350 MHz clock frequency. It uses the following
resources.

Resource Number Used
LUT 891
FFS 899
Xilinx LogiCORE DSP48 0

1 Blocks

1-132

Resource Number Used
Block RAM (16K) 0
Critical path 2.792 ns

When you use a multiplier for the CORDIC gain scaling, the design uses one DSP block and has a
shorter critical path. The critical path difference is not significant at this number of bits, but as the
size of the data increases, the critical path of the CSD implementation rises faster than the critical
path of the multiplier.

Resource Number Used
LUT 808
FFS 956
Xilinx LogiCORE DSP48 1
Block RAM (16K) 0
Critical path 2.574 ns

Performance of the synthesized HDL code varies depending on your target and synthesis options.
When you use vector input, the resource usage is about VectorSize times the scalar resource usage.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this block was named Complex to Magnitude-Angle HDL Optimized, and was included
in the DSP System Toolbox DSP System Toolbox HDL Support library.

Option to use multiplier for scale factor

In previous releases, the block implemented the CORDIC gain for hardware by using shift-and-add
logic. To use a multiplier, set the Scaling method parameter to Multipliers. To use shift-and-add
logic, set this property to CSD.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration option that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has a single, default HDL architecture.

 Complex to Magnitude-Angle

1-133

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Complex Data Support

This block supports code generation for complex signals.

See Also
Complex to Magnitude-Angle | dsphdl.ComplexToMagnitudeAngle | atan2

Topics
“HDL QAM Transmitter and Receiver” (Communications Toolbox)

Introduced in R2014b

1 Blocks

1-134

Biquad Filter
Biquadratic IIR (SOS) filter
Library: DSP HDL Toolbox / Filtering

Description
A biquad filter is a form of infinite-impulse response (IIR) filter where the numerator and denominator
are split into a series of second-order sections connected by gain blocks. This type of filter can
replace a large FIR filter that uses an impractical amount of hardware resources. Designs often use
biquad filters as DC blocking filters or to meet a specification originally implemented with an analog
filter, such as a pre-emphasis filter.

Ports
Input

data — Input data
scalar or column vector of real values

Input data, specified as a scalar or column vector of real values. When the input has an integer or
fixed-point data type, the block uses fixed-point arithmetic for internal calculations.

Vector input is supported only when you set Filter structure to Pipelined feedback form. The
block accepts vectors up to 64 samples, but large vector sizes can make the calculation of internal
data types challenging. Vector sizes of up to 16 samples are practical for hardware implementation.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When valid is 1 (true), the block captures the
values from the input data port. When valid is 0 (false), the block ignores the values from the input
data port.
Data Types: Boolean

Output

data — Filtered output data
scalar or column vector of real values

Filtered output data, returned as a scalar or column vector of real values. The output dimensions
match the input dimensions. When the input data type is a floating-point type, the output data

 Biquad Filter

1-135

inherits the data type of the input data. When the input data type is an integer type or a fixed-point
type, the Output parameter on the Data Types tab controls the output data type.
Data Types: fixed point | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

valid — Indicates valid output data
scalar

Control signal that indicates if the data from the output data port is valid. When valid is 1 (true),
the block returns valid data from the output data port. When valid is 0 (false), the values from the
output data port are not valid.
Data Types: Boolean

Parameters
Main

Filter structure — HDL filter architecture
Direct form II (default) | Direct form II transposed | Pipelined feedback form

Both the Direct form II and Direct form II transposed architectures are pipelined and
quantized to fit well into FPGA DSP blocks. The output of these filters matches the output of the DSP
System Toolbox System objects dsp.SOSFilter and dsp.FourthOrderSectionFilter. These
architectures minimize the number of multipliers used by the filter but have a critical path through
the feedback loop and sometimes cannot achieve higher clock rates.

Pipelined feedback form implements a pipelined architecture that uses more multipliers than
either direct-form II structure, but achieves higher clock rates after synthesis. Frame-based input is
supported only when you use Pipelined feedback form. The output of the pipelined filter is
slightly different than the DSP System Toolbox functions dsp.SOSFilter and
dsp.FourthOrderSectionFilter because of the timing of data samples applied in the pipelined
filter stages.

Numerator coefficients of filter — Coefficients for numerator
[1,2,1] (default) | NumSections-by-3 matrix

Specify the numerator coefficients as a matrix of NumSections-by-3 values. NumSections is the
number of second-order filter sections. The block infers the number of filter sections from the size of
the numerator and denominator coefficients. The numerator coefficient and denominator coefficient
matrices must be the same size. The default filter has one section.

Denominator coefficients of filter — Coefficients for denominator
[1,.1,.2] (default) | NumSections-by-3 matrix

Specify the denominator coefficients as a matrix of NumSections-by-3 values. The block assumes the
first denominator coefficient of each section is 1.0. NumSections is the number of second-order filter
sections. The block infers the number of sections from the size of the numerator and denominator
coefficients. The numerator coefficient and denominator coefficient matrices must be the same size.
The default filter has one section.

Scale values of filter — Gain values applied before and after second-order filter
sections
[1] (default) | vector of 1 to NumSections+1 values

1 Blocks

1-136

Specify the gain values as a vector of up to NumSections+1 values. NumSections is the number of
second-order filter sections. The block infers the number of sections from the size of the numerator
and denominator coefficients. If the vector has only one value, the block applies that gain before the
first section. If you specify fewer values than there are filter sections, the block sets the remaining
section gain values to one. The diagram shows a 3-section filter and the locations of the four scale
values before and after the sections.

Implementing these gain factors outside the filter sections reduces the multipliers needed to
implement the numerator of the filter.

Data Types

Rounding mode — Rounding mode for type-casting the output
Floor (default) | Ceiling | Convergent | Nearest | Round | Zero

Rounding mode for type-casting the output and accumulator values to the data types specified by the
Output and Accumulator parameters. When the input data type is floating point, the block ignores
this parameter. For more details, see “Rounding Modes”.

Saturate on integer overflow — Overflow handling for type-casting the output
off (default) | on

Overflow handling for type-casting the output and accumulator values to the data types specified by
the Output and Accumulator parameters. When the input data type is floating point, the block
ignores this parameter. For more details, see “Overflow Handling”.

Numerator — Data type of numerator coefficients
Inherit: Same word length as first input (default) | <data type expression>

The block casts the numerator coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The block returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

Denominator — Data type of denominator coefficients
Inherit: Same word length as first input (default) | <data type expression>

The block casts the denominator coefficients to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

The block returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

ScaleValues — Data type of gain
Inherit: Same word length as first input (default) | <data type expression>

 Biquad Filter

1-137

The block casts the scale values to this data type. The quantization rounds to the nearest
representable value and saturates on overflow. When the input data type is floating point, the block
ignores this parameter.

Accumulator — Data type of accumulator signals within each section
Inherit: Same as first input (default) | <data type expression>

The block casts the internal accumulator signals (as indicated in the diagrams in the “Algorithms” on
page 1-138 section) to this data type. The quantization uses the settings of the Rounding mode and
Saturate on integer overflow parameters. When the input data type is floating point, the block
ignores this parameter.

Output — Data type of filter output
Inherit: Inherit via internal rule (default) | Inherit: Same as first input | <data
type expression>

The block casts the output of the filter to this data type. The quantization uses the settings of the
Rounding mode and Saturate on integer overflow parameters. When the input data type is
floating point, the block ignores this parameter.

Algorithms
The direct form II and direct form II transposed architectures are pipelined and quantized to fit well
into FPGA DSP blocks. The architecture diagrams show the accumulator quantization points and
pipeline registers for the direct form II and direct form II transposed architectures. The dashed lines
indicate how the multiply-add operation fits into a DSP block on an FPGA.

The transposed biquad filter implementations have a long critical path through the feedback loop
between poles z-1 and z-2. They use the lowest number of multipliers but are not suitable for high-
speed applications.

The pipelined biquad architecture uses more multipliers but reduces the critical path and achieves
higher clock rates. The filter uses the Parhi method [1], which adds pipeline registers by increasing
the order of the denominator, and then compensates for the modified denominator by adding poles in
the numerator. The pipelined denominator uses order z-4 and z-8 rather than z-1 and z-2. Since the

1 Blocks

1-138

poles are less than one for a stable filter, the poles from the higher orders are smaller than the
starting values, which adds to filter stability.

To support frame-based input, the pipelined architecture increases the order of the denominator to
the power of the input size. A frame-based pipelined denominator uses z-N*4 and z-N*8, where N is the
size of the input vector. The new numerator that compensates for the additional poles in the
denominator has 2*N*4-1 coefficients. This implementation uses more resources but supports high-
throughput applications.

Performance

For a comparison of hardware resource use and synthesized clock speed of the three biquad filter
architectures, see “High Performance DC Blocker for FPGA”.

References
[1] Chung, Jin-Gyun, and Keshab K. Parhi. Pipelined Lattice and Wave Digital Recursive Filters.

Boston: Springer US, 1996. https://doi.org/10.1007/978-1-4613-1307-6.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

This block supports C/C++ code generation for Simulink accelerator and rapid accelerator modes
and for DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has a single, default HDL architecture.

HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

 Biquad Filter

1-139

See Also
Discrete FIR Filter | dsphdl.BiquadFilter

Introduced in R2022a

1 Blocks

1-140

System Objects

2

dsphdl.CICInterpolator
Package: dsphdl

Interpolate signal using CIC filter

Description
The dsphdl.CICInterpolator System object™ interpolates an input signal by using a cascaded
integrator-comb (CIC) interpolation filter. CIC interpolation filters are a class of linear phase finite
impulse response (FIR) filters consisting of a comb part and an integrator part. The CIC interpolation
filter structure consists of N sections of cascaded comb filters, a rate change factor of R, and N
sections of cascaded integrators. For more information about CIC interpolation filters, see
“Algorithms” on page 2-11.

The System object supports these combinations of input and output data.

• Scalar input and scalar output — Support for fixed and variable interpolation rates
• Scalar input and vector output — Support for fixed interpolation rates only
• Vector input and vector output — Support for fixed interpolation rates only

The System object provides an architecture suitable for HDL code generation and hardware
deployment.

The System object supports real and complex fixed-point inputs.

To filter input data with a CIC interpolator filter, follow these steps:

1 Create the dsphdl.CICInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cicIntFilt = dsphdl.CICInterpolator
cicIntFilt = dsphdl.CICInterpolator(Name,Value)

Description

cicIntFilt = dsphdl.CICInterpolator creates a CIC interpolator filter System object,
cicIntFilt, with default properties.

cicIntFilt = dsphdl.CICInterpolator(Name,Value) creates the filter with properties set
using one or more name-value arguments. Enclose each property name in single quotes.

2 System Objects

2-2

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationSource — Source of interpolation factor
'Property' (default) | 'Input port'

Specify whether the System object operates with a fixed or variable interpolation rate.

• 'Property' — Use a fixed interpolation rate specified by the InterpolationFactor property.
• 'Input port' — Use a variable interpolation rate specified by the R input argument.

Note The System object does not support variable interpolation for these two combinations of input
and output:

• Scalar input and vector output
• Vector input and vector output

InterpolationFactor — Interpolation factor
2 (default) | integer from 1 to 2048

Specify the interpolation factor as an integer from 1 to 2048. The range of available values depends
on the type of input and output data. This value gives the rate at which the System object interpolates
the input.

Input Data Output Data InterpolationFactor Valid Values
Scalar Scalar Integer from 1 to 2048
Scalar Vector Integer from 1 to 64
Vector Vector Integer from 1 to 64

Note For vector inputs, select the interpolation factor rate and input vector length such that their
multiplication value does not exceed 64.

Dependencies

To enable this property, set the InterpolationSource property to 'Property'.

MaxInterpolationFactor — Upper bound of variable interpolation factor
2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input argument as an integer from 1 to
2048.

 dsphdl.CICInterpolator

2-3

Note The System object does not support variable interpolation for these two combinations of input
and output:

• Scalar input and vector output
• Vector input and vector output

Dependencies

To enable this property, set the InterpolationSource property to 'Input port'.

DifferentialDelay — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the filter as either 1 or 2 cycles.

NumSections — Number of integrator and comb sections
2 (default) | 1 | 3 | 4 | 5 | 6

Specify the number of sections in either the comb part or the integrator part of the System object.

NumCycles — Minimum number of cycles between valid input samples
1 (default) | factors or multiples of R

Specify the minimum number of cycles between the valid input samples as 1, factors of R, or
multiples of R based on the type of input and output data, where R is the interpolation factor.

Input Data Output Data Minimum Number of Cycles Between
Valid Input Samples

Scalar Scalar greater than or equal to R
Scalar Vector factors less than R
Vector Vector 1

Dependencies

To enable this property, set the InterpolationSource property to 'Property'.

GainCorrection — Output gain compensation
false (default) | true

Set this property to true to compensate for the output gain of the filter.

The latency of the System object changes depending on the type of interpolation you specify, the
number of sections, and the value of this property. For more information on the latency of the System
object, see “Latency” on page 2-14.

OutputDataType — Data type of output
'Full precision' (default) | 'Same word length as input' | 'Minimum section word
lengths'

Choose the data type of the filtered output data.

• 'Full precision' — The output data type has a word length equal to the input word length
plus gain bits.

2 System Objects

2-4

• 'Same word length as input' — The output data type has a word length equal to the input
word length.

• 'Minimum section word lengths' — The output data type uses the word length you specify
in the OutputWordLength property.

OutputWordLength — Word length of output
16 (default) | integer from 2 to 104

Word length of the output, specified as an integer from 2 to 104.

Dependencies

To enable this property, set the OutputDataType property to 'Minimum section word lengths'.

ResetInputPort — Reset argument
false (default) | true

When you set this property to true, the System object expects a reset input argument.

Usage

Syntax
[dataOut,validOut] = cicIntFilt(dataIn,validIn)
[dataOut,validOut] = cicIntFilt(dataIn,validIn,R)
[dataOut,validOut] = cicIntFilt(dataIn,validIn,reset)
[dataOut,validOut] = cicIntFilt(dataIn,validIn,R,reset)

Description

[dataOut,validOut] = cicIntFilt(dataIn,validIn) filters and interpolates the input data
using a fixed interpolation factor only when validIn is true.

[dataOut,validOut] = cicIntFilt(dataIn,validIn,R) filters the input data using the
specified variable interpolation factor R. The InterpolationSource property must be set to
'Input port'.

[dataOut,validOut] = cicIntFilt(dataIn,validIn,reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetIn property to true.

[dataOut,validOut] = cicIntFilt(dataIn,validIn,R,reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetIn property to true. The InterpolationSource
property must be set to 'Input port'.

Input Arguments

dataIn — Input data
scalar | column vector

Specify input data as a scalar or a column vector with a length from 1 to 64. The input data must be a
signed integer or signed fixed point with a word length less than or equal to 32.

 dsphdl.CICInterpolator

2-5

Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

R — Variable interpolation rate
scalar

Use this argument to dynamically specify the variable interpolation rate during run time.

This value must have the data type fi(0,12,0) and must be an integer in the range from 1 to the
MaxInterpolationFactor property value.

Dependencies

To enable this argument, set the InterpolationSource property to 'Input port'.
Data Types: fi(0,12,0)

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetIn property to true.
Data Types: logical

Output Arguments

dataOut — CIC-interpolated output data
scalar | column vector

CIC-interpolated output data, returned as a scalar or a column vector with a length from 1 to 64.

The OutputDataType property sets the data type of this argument.
Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validOut — Indicates valid output data
scalar

2 System Objects

2-6

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.CICInterpolator
getLatency Latency of CIC interpolation filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create CIC Interpolation Filter for HDL Code Generation

This example shows how to use a dsphdl.CICInterpolator System object™ to filter and upsample
data. This object supports scalar and vector inputs. In this example, two functions are provided to
work with scalar and vector input data separately. You can generate HDL code from these functions.

Generate Frames of Random Input Samples

Set up workspace variables for the object to use. The object supports fixed and variable interpolation
rates for scalar inputs and only a fixed interpolation rate for vector inputs. The example runs the
HDLCICInterp_maxR8 function when you set the scalar variable to true and runs the
HDLCICInterp_vec function when you set the scalar variable to false. For scalar inputs, choose a
range of the input varRValue values and set the interpolation factor value R to the maximum
expected interpolation factor. For vector inputs, the input data must be a column vector of size 1 to
64 and R must be an integer multiple of the input frame size.

R = 8; % interpolation factor
M = 1; % differential delay
N = 3; % number of sections

 dsphdl.CICInterpolator

2-7

scalar = true; % true for scalar; false for vector
if scalar
 varRValue = [2, 4, 5, 6, 7, 8];
 vecSize = 1;
else
 varRValue = R; %#ok
 fac = (factor(R));
 vecSize = fac(randi(length(fac),1,1));
end

numFrames = length(varRValue);
dataSamples = cell(1,numFrames);
varRtemp = cell(1,numFrames);
framesize = zeros(1,numFrames);
refOutput = [];
WL = 0; % Word length
FL = 0; % Fraction length

Generate Reference Output from dsp.CICInterpolator System Object

Generate frames of random input samples and apply the samples to the dsp.CICInterpolator
System object. Later in this example, you use the output generated by the System object as reference
data for comparison. The System object does not support a variable interpolation rate, so you must
create and release the object for each change in interpolation factor value.

totalsamples = 0;
for i = 1:numFrames
 framesize(i) = varRValue(i)*randi([5 20],1,1);
 dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
 ref_cic = dsp.CICInterpolator('DifferentialDelay',M, ...
 'NumSections',N, ...
 'InterpolationFactor',varRValue(i));
 refOutput = [refOutput,ref_cic(dataSamples{i}(:)).']; %#ok
 release(ref_cic);
end

Run Function Containing dsphdl.CICInterpolator System Object

Set the properties of the System object to match the input data parameters and run the function for
your input type. These functions operate on a stream of data samples rather than a frame. You can
generate HDL code from these functions.

The example uses the HDLCICInterp_maxR8 function for a scalar input.

function [dataOut,validOut] = HDLCICInterp_maxR8(dataIn,validIn,R)
%HDLCICInterp_maxR8
% Performs CIC interpolation with an input interpolation factor up to 8.
% sampleIn is a scalar fixed-point value.
% validIn is a logical scalar value.

 persistent cic8;
 if isempty(cic8)
 cic8 = dsphdl.CICInterpolator('InterpolationSource','Input port', ...
 'MaxInterpolationFactor',8, ...
 'DifferentialDelay',1, ...
 'NumSections',3);
 end

2 System Objects

2-8

 [dataOut,validOut] = cic8(dataIn,validIn,R);
end

The example uses the HDLCICInterp_vec function for a vector input.

function [dataOut,validOut] = HDLCICInterp_vec(dataIn,validIn)
%HDLCICInterp_vec
% Performs CIC interpolation with an input vector.
% sampleIn is a fixed-point vector.
% validIn is a logical scalar value.

 persistent cicVec;
 if isempty(cicVec)
 cicVec = dsphdl.CICInterpolator('InterpolationSource','Property', ...
 'InterpolationFactor',8, ...
 'DifferentialDelay',1, ...
 'NumSections',3);
 end
 [dataOut,validOut] = cicVec(dataIn,validIn);
end

To flush the remaining data, run the object by inserting the required number of idle cycles after each
frame using the latency variable. For more information, see the “GainCorrection” on page 2-0
property.

Initialize the output to a size large enough to accommodate the output data. The final size is smaller
than totalsamples due to interpolation.

if scalar
 latency = 3 + N + 9;
 dataOut = zeros(1,totalsamples*R+numFrames*latency);

else
 latency = 3 + (N*(vecSize*R))+ 3*N + 9; %#ok
 dataOut = zeros(vecSize*R,totalsamples+numFrames*latency);
end
validOut = zeros(1,size(dataOut,2));
idx=0;
for ij = 1:numFrames
 if scalar
 dataIn = upsample(dataSamples{ij},R);
 validIn = upsample(true(1,length(dataSamples{ij})),R);
 % scalar input with variable interpolation
 for ii = 1:length(validIn)
 idx = idx+1;
 [dataOut(:,idx),validOut(idx)] = HDLCICInterp_maxR8(...
 dataIn(ii), ...
 validIn(ii), ...
 fi(varRValue(ij),0,12,0));
 end
 for ii = 1:latency
 idx = idx+1;
 [dataOut(:,idx),validOut(idx)] = HDLCICInterp_maxR8(...
 fi(0,1,16,8), ...
 false, ...

 dsphdl.CICInterpolator

2-9

 fi(varRValue(ij),0,12,0));
 end

 else
 % vector input with fixed interpolation
 for ii = 1:size(dataSamples{ij},2) %#ok
 idx = idx+1;
 [dataOut(:,idx),validOut(idx)] = HDLCICInterp_vec(...
 dataSamples{ij}(:,ii), ...
 true);
 end
 for ii = 1:latency
 idx = idx+1;
 [dataOut(:,idx),validOut(idx)] = HDLCICInterp_vec(...
 fi(zeros(vecSize,1),1,16,8), ...
 false);
 end
 end
end

Compare Function Output with Reference Data

Compare the function results against the output from the dsp.CICInterpolator object.

cicOutput = dataOut(:,validOut==1);
refOutput = refOutput(:);

fprintf('\nCIC Interpolator\n');
difference = (abs(cicOutput(:)-refOutput(1:numel(cicOutput)))>0);
fprintf(['\nTotal number of samples differed between Behavioral ' ...
 'and HDL simulation: %d \n'],sum(difference));

CIC Interpolator

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of CIC Interpolator Object

The latency of the dsphdl.CICInterpolator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICInterpolator System object and request the latency. The default System
object filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic = dsphdl.CICInterpolator

hdlcic =
 dsphdl.CICInterpolator with properties:

 InterpolationSource: 'Property'
 InterpolationFactor: 2
 DifferentialDelay: 1

2 System Objects

2-10

 NumSections: 2
 NumCycles: 1
 GainCorrection: false

 Show all properties

L_def = getLatency(hdlcic)

L_def = 13

Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L_3sec = getLatency(hdlcic)

L_3sec = 18

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;
vecSize = 2;
L_wgain = getLatency(hdlcic,vecSize)

L_wgain = 33

Algorithms
CIC Interpolation Filter

The transfer function of a CIC interpolation filter is

H(z) = ∑
k = 0

RM − 1
z−k

N
= (1− z−RM)N

(1− z−1)N = (1− z−RM)N

1 · 1
(1− z−1)N = HCN(z) · HIN(z) .

• HC is the transfer function of the comb part of the CIC filter.
• HI is the transfer function of the integrator part of the CIC filter.
• N is the number of sections in either the comb part or integrator part of the filter. This value does

not represent the total number of sections throughout the entire filter.
• R is the interpolation factor.
• M is the differential delay.

CIC Filter Structure

The dsphdl.CICInterpolator System object has the CIC filter structure shown in this figure. The
structure consists of N sections of cascaded comb filters, a rate change factor of R, and N sections of
cascaded integrators [1].

 dsphdl.CICInterpolator

2-11

You can locate the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the paths.
Because this configuration is preferred for HDL implementation, this System object puts the unit
delay in the feedforward path of the integrator.

Fixed and Variable Interpolation

The System object upsamples the comb stage output using R, either using the fixed interpolation rate
provided using the InterpolationFactor property or the variable interpolation rate provided using the
R input argument. At the upsampling stage, the System object uses a counter to count the valid input
samples, which depend on the interpolation rate. Whenever the interpolation rate changes, the
System object resets and starts a new calculation from the next sample. This mechanism prevents the
object from accumulating false values. Then, the System object provides the interpolated output to
the integrator part of the CIC filter.

Gain Correction

The gain of the CIC interpolation filter at each stage is given by

Gi =
2i i = 1, 2, ..., N

22N − i RM i− N

R i = N + 1, ..., 2N
.

• Gi is the gain at ith stage.
• R is the InterpolationFactor property value.
• M is the DifferentialDelay property value.
• N is the NumSections property value.

The output of the System object is amplified by a specific gain value. This gain equals the gain of the

2Nth stage of the CIC interpolation filter and is given by Gain = (R x M)N

R .

The System object implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the System object calculates the shift value, adds the shift value to the fractional bits to
create a numeric type, and performs a bit-shift left and reinterpretcast. In fine gain correction, the
System object divides the remaining gain with the coarse gain if the gain is not a power of 2. Then,
the System object multiplies the corrected coarse gain value by the inverse value of the fine gain.
Before the System object starts processing, all possible shift and fine gain values are precalculated
and stored in an array.

You can modify this equation to Gain = 2cGain x fGain. In this equation, cGain is the coarse gain and
fGain is the fine gain. These gains are given by these equations.

• cGain = f loor(log2Gain)
• fGain = Gain/2cGain = Gain x 2−cGain

To perform gain correction when the InterpolationSource property is set to 'Input port', the
System object sets the output data type configured with the maximum interpolation rate and bit-shifts
left for all of the values under the maximum interpolation rate. The bit-shift value is equal to
Maximum gain − log2(current gain).

2 System Objects

2-12

Output Data Type

This section explains how the System object outputs data is based on the output data type selection.
Consider a System object with R, M, and N values of 8, 1, and 3, respectively, and an input width of
16. The word length at the ith stage is calculated as Bi = BIn + [log2(Gi)], where:

• Gi is the gain at ith stage.
• BIn is the input word length.
• Bi is the word length at ith stage.

The output word length is calculated as BOut = BIn + N − 1, where BOut is the output word length.

When you set the OutputDataType property to 'Full precision', the System object returns data
with a word length of 22 by adding 6 gain bits to the input word length of 16. The word lengths of the
internal comb and integrator stages are set to accommodate the bit growth.

When you set the OutputDataType property to 'Same word length as input', the object
outputs data with a word length of 16, which is the same length as the input word length. The word
lengths of the internal comb and integrator stages are set in the same way as in 'Full precision'
mode.

When you set the OutputDataType property to 'Minimum section word lengths' and the
OutputWordLength to 16, the System object returns data with a word length of 16. The word
lengths of the internal comb and integrator stages are set in the same way as in 'Full precision'
mode.

 dsphdl.CICInterpolator

2-13

Latency

The latency of the System object changes depending on the type of input, the interpolation you
specify, the value of the NumSections property, GainCorrection property, and the NumCycles
property. This table shows the latency of the System object. N is the number of sections, vecLen is the
length of the vector, and R is the interpolation factor.

Common latency is equal to 2 + (N x (vecLen x R)) + 3 x N, when R is equal to 1 and it is equal to 3 +
(N x (vecLen x R)) + 3 x N, when R is greater than 1.

Input
Data

Output
Data

Interpolat
ion Type

Gain
Correctio
n

Minimum
number
of cycles
between
valid
input
samples
(NumCyc
les)

Latency in Clock Cycles

Scalar Scalar Fixed off NumCycle
s = R and
> R

3 + N

2 + N, when R = 1.
on NumCycle

s = R and
> R

3 + N + 9

2 + N + 9, when R = 1.
Scalar Scalar Variable off NA 4 + N

3 + N, when Rmax = 1.
on NA 4 + N + 9

3 + N + 9, when Rmax = 1.
Scalar Vector Fixed off NumCycle

s = 1
Common latency + 1, when R is greater than N.

Common latency, when R is less than or equal to N.

Common latency – (1 + floor(N/(3 x R))), when R is
less than N and (vecLen == 2 && (R == 2 && (N
== 4 || N == 5 || N == 6)) || (R== 3 && N == 6))

NumCycle
s < R

3 + N + ((R + 1) x N + 2) + 1 + (N – 1) x
NumCycles.

on NumCycle
s = 1

Common latency + 1 + 9, when R is greater than N.

Common latency + 9, when R is less than or equal to
N.

Common latency – (1 + floor(N/(3 x R))) + 9, when R
is less than N and (vecLen == 2 && (R == 2 && (N
== 4 || N == 5 || N == 6)) || (R == 3 && N == 6)).

NumCycle
s < R

3 + N + ((R + 1) x N + 2) + 1 + (N – 1) x
NumCycles + 9

2 System Objects

2-14

Input
Data

Output
Data

Interpolat
ion Type

Gain
Correctio
n

Minimum
number
of cycles
between
valid
input
samples
(NumCyc
les)

Latency in Clock Cycles

Vector Vector Fixed off NumCycle
s = 1

Common latency

Common latency – 1, when (vecLen == 2 && (R ==
2 && (N == 4 || N == 5 || N == 6)) || (R== 3 && N
== 6)) || (vecLen == 3 && (R == 2 && N == 6))

Common latency – ((N >1) + (N > 4)), when R = 1
and vecLen == 2.

Common latency – ((N > (vecLen – 1)), when R = 1
and vecLen > 2.

on NumCycle
s = 1

Common latency + 9

Common latency – 1 + 9, when (vecLen == 2 && (R
== 2 && (N == 4 || N == 5 || N == 6)) || (R== 3
&& N == 6)) || (vecLen == 3 && (R == 2 && N ==
6))

Common latency – ((N >1) + (N > 4)) + 9, when R =
1 and vecLen == 2.

Common latency – ((N > (vecLen – 1)) + 9, when R
= 1 and vecLen > 2.

Note The System object does not support variable interpolation for these two combinations of input
and output:

• Scalar input and vector output
• Vector input and vector output

Scalar Input

This section shows the output of the System object for a scalar input with different R, M, and N
values.

This figure shows the output of the System object with the default configuration (that is, with a fixed
interpolation rate and R, M, and N values of 2, 1, and 2, respectively). The latency of the System
object is 5 clock cycles and is calculated as 3 + N, where N is the number of sections.

 dsphdl.CICInterpolator

2-15

This figure shows the output of the System object with a fixed interpolation rate, R, M, and N values
of 8, 1, and 3, respectively, and GainCorrection set to true. The latency of the object is 15 clock
cycles and is calculated as 3 + N + 9, where N is the number of sections.

This figure shows the output of the System object with variable interpolation rate (R input argument)
values of 2, 4, and 8 and with M and N values of 1 and 3, respectively. In this case, the
GainCorrection property is set to false. The System object accepts R argument value changes
only when validIn is 1 (true). The latency of the System object is 7 clock cycles and is calculated
as 4 + N, where N is the number of sections.

Vector Input

This section shows the output of the System object for a vector input with different R, M, and N
values.

This figure shows the output of the System object for a two-element column vector input with the
default configuration, that is, with a fixed interpolation rate and R, M, and N values of 2, 1, and 2,
respectively. The latency of the System object is 38 clock cycles.

2 System Objects

2-16

This figure shows the output of the System object for an eight-element column vector input with a
fixed interpolation rate, R, M, and N values of 8, 1, and 3, respectively, and the GainCorrection
property to true. The latency of the System object is 209 clock cycles.

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
depends on the input data type.

This table shows the resource and performance data synthesis results of the System object for a
scalar input with fixed and variable interpolation rates and for a two-element column vector of type
fixdt(1,16,0) with a fixed interpolation rate when R, M, and N are 2, 1, and 2, respectively. The
generated HDL code is targeted to the Xilinx Zynq- 7000 ZC706 Evaluation Board.

Input Data Interpolation Type Slice LUTs Slice Registers Maximum Frequency in
MHz

Scalar Fixed rate 68 90 844.12
Variable rate 143 115 451.83

Vector Fixed rate 480 921 376.51

The resources and frequencies vary based on the type of input data, and the values of R, M, and N, as
well as other properties.

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155–62.
https://doi.org/10.1109/TASSP.1981.1163535.

 dsphdl.CICInterpolator

2-17

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB® simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsphdl.CICDecimator

Blocks
CIC Interpolator | CIC Decimator

Introduced in R2022a

2 System Objects

2-18

dsphdl.CICDecimator
Package: dsphdl

Decimate signal using CIC filter

Description
The dsphdl.CICDecimator System object decimates an input signal by using a cascaded
integrator-comb (CIC) decimation filter. CIC filters are a class of linear phase finite impulse response
(FIR) filters consisting of a comb part and an integrator part. The CIC decimation filter structure
consists of N sections of cascaded integrators, a rate change factor of R, and N sections of cascaded
comb filters. For more information about CIC decimation filters, see “Algorithms” on page 2-27.

The System object supports these combinations of input and output data.

• Scalar input and scalar output — Support for fixed and variable decimation rates
• Vector input and scalar output — Support for fixed decimation rates only
• Vector input and vector output — Support for fixed decimation rates only

The System object provides an architecture suitable for HDL code generation and hardware
deployment.

The System object supports real and complex fixed-point inputs.

To filter input data with an HDL-optimized CIC decimation filter, follow these steps:

1 Create the dsphdl.CICDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
cicDecFilt = dsphdl.CICDecimator
cicDecFilt = dsphdl.CICDecimator(Name,Value)

Description

cicDecFilt = dsphdl.CICDecimator creates an HDL-optimized CIC decimation filter System
object, cicDecFilt, with default properties.

cicDecFilt = dsphdl.CICDecimator(Name,Value) creates the filter with properties set using
one or more name-value arguments. Enclose each property name in single quotes.

 dsphdl.CICDecimator

2-19

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

DecimationSource — Source of decimation factor
'Property' (default) | 'Input port'

Specify whether the System object operates with a fixed or variable decimation rate.

• 'Property' — Use a fixed decimation rate specified by the DecimationFactor property.
• 'Input port' — Use a variable decimation rate specified by the R input argument.

For vector inputs, the System object does not support a variable decimation rate.

DecimationFactor — Decimation factor
2 (default) | integer from 1 to 2048

Specify the decimation factor as an integer from 1 to 2048. This value gives the rate at which the
System object decimates the input.

Dependencies

To enable this property, set the DecimationSource property to 'Property'.

MaxDecimationFactor — Upper bound of variable decimation factor
2 (default) | integer from 1 to 2048

Specify the upper bound of the range of valid values for the R input argument as an integer from 1 to
2048.

Note For vector inputs, the System object does not support variable decimation.

Dependencies

To enable this property, set the DecimationSource property to 'Input port'.

DifferentialDelay — Differential delay
1 (default) | 2

Specify the differential delay of the comb part of the filter as either 1 or 2 cycles.

NumSections — Number of integrator or comb sections
2 (default) | 1 | 3 | 4 | 5 | 6

Specify the number of sections in either the integrator or the comb part of the System object.

GainCorrection — Output gain compensation
false (default) | true

2 System Objects

2-20

Set this property to true to compensate for the output gain of the filter.

The latency of the System object varies depending on the type of input, the decimation you specify,
the number of sections, and the value of this property. For more information on the latency of the
System object, see “Latency” on page 2-30.

OutputDataType — Data type of output
'Full precision' (default) | 'Same word length as input' | 'Minimum section word
lengths'

Choose the data type of the filtered output data.

• 'Full precision' — The output data type has a word length equal to the input word length
plus gain bits.

• 'Same word length as input' — The output data type has a word length equal to the input
word length.

• 'Minimum section word lengths' — The output data type uses the word length you specify
in the OutputWordLength property. When you choose this option, the System object applies a
pruning algorithm internally. For more information about pruning, see “Output Data Type” on
page 2-28.

OutputWordLength — Word length of output
16 (default) | integer from 2 to 104

Word length of the output, specified as an integer from 2 to 104.

Note When this value is 2, 3, 4, 5, or 6, the System object can overflow the output data.

Dependencies

To enable this property, set the OutputDataType property to 'Minimum section word
lengths'.

ResetInputPort — Reset argument
false (default) | true

When you set this property to true, the System object expects a reset input argument.

Usage

Syntax
[dataOut,validOut] = cicDecFilt(dataIn,validIn)
[dataOut,validOut] = cicDecFilt(dataIn,validIn,R)
[dataOut,validOut] = cicDecFilt(dataIn,validIn,reset)
[dataOut,validOut] = cicDecFilt(dataIn,validIn,R,reset)

Description

[dataOut,validOut] = cicDecFilt(dataIn,validIn) filters and decimates the input data
using a fixed decimation factor only when validIn is true.

 dsphdl.CICDecimator

2-21

[dataOut,validOut] = cicDecFilt(dataIn,validIn,R) filters the input data using the
specified variable decimation factor R. The DecimationSource property must be set to 'Input
port'.

[dataOut,validOut] = cicDecFilt(dataIn,validIn,reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetInputPort property to true.

[dataOut,validOut] = cicDecFilt(dataIn,validIn,R,reset) filters the input data when
reset is false and clears filter internal states when reset is true. The System object expects the
reset argument only when you set the ResetInputPort property to true. The
DecimationSource property must be set to 'Input port'.

Input Arguments

dataIn — Input data
scalar | column vector

Specify input data as a scalar or a column vector with a length from 1 to 64. The input data must be a
signed integer or signed fixed point with a word length less than or equal to 32. The
DecimationFactor property must be an integer multiple of the input frame size.
Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

R — Variable decimation rate
scalar

Specify the decimation rate.

The R value must have the data type fi(0,12,0) and it must be an integer in the range from 1 to
the MaxDecimationFactor property value.
Dependencies

To enable this argument, set the DecimationSource property to 'Input port'.
Data Types: fi(0,12,0)

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

2 System Objects

2-22

Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — CIC-decimated output data
scalar | column vector

CIC-decimated output data, returned as a scalar or a column vector with a length from 1 to 64.

The OutputDataType property sets the data type of this argument. See “Output Data Type” on page
2-28.
Data Types: int8 | int16 | int32 | fi
Complex Number Support: Yes

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.CICDecimator
getLatency Latency of CIC decimation filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create CIC Decimation Filter for HDL Code Generation

This example shows how to use a dsphdl.CICDecimator System object™ to filter and downsample
data. This object supports scalar and vector inputs. In this example, two functions are provided to
work with scalar and vector inputs separately. You can generate HDL code from these functions.

 dsphdl.CICDecimator

2-23

Generate Frames of Random Input Samples

Set up workspace variables for the object to use. The object supports fixed and variable decimation
rates for scalar inputs and only a fixed decimation rate for vector inputs. The example runs the
HDLCIC_maxR8 function when you set the scalar variable to true and runs the HDLCIC_vec function
when you set the scalar variable to false. For scalar inputs, choose a range of the input varRValue
values and set the decimation factor value R to the maximum expected decimation factor. For vector
inputs, the input data must be a column vector of size 1 to 64 and R must be an integer multiple of
the input frame size.

R = 8; % decimation factor
M = 1; % differential delay
N = 3; % number of sections
scalar = true; % true for scalar; false for vector
if scalar
 varRValue = [2, 4, 5, 6, 7, 8];
 vecSize = 1;
else
 varRValue = R; %#ok
 fac = (factor(R));
 vecSize = fac(randi(length(fac),1,1));
end

numFrames = length(varRValue);
dataSamples = cell(1,numFrames);
varRtemp = cell(1,numFrames);
framesize = zeros(1,numFrames);
refOutput = [];
WL = 0; % Word length
FL = 0; % Fraction length

Generate Reference Output from dsp.CICDecimator System Object

Generate frames of random input samples and apply the samples to the dsp.CICDecimator System
object. Later in this example, you use the output generated by the System object as reference data for
comparison. The System object does not support a variable decimation rate, so you must create and
release the object for each change in decimation factor value.

totalsamples = 0;
for i = 1:numFrames
 framesize(i) = varRValue(i)*randi([5 20],1,1);
 dataSamples{i} = fi(randn(vecSize,framesize(i)),1,16,8);
 ref_cic = dsp.CICDecimator('DifferentialDelay',M, ...
 'NumSections',N, ...
 'DecimationFactor',varRValue(i));
 refOutput = [refOutput,ref_cic(dataSamples{i}(:)).']; %#ok
 release(ref_cic);
end

Run Function Containing dsphdl.CICDecimator System Object

Set the properties of the System object to match the input data parameters and run the function for
your input type. These functions operate on a stream of data samples rather than a frame. You can
generate HDL code from these functions.

The example uses the HDLCIC_maxR8 function for a scalar input.

2 System Objects

2-24

function [dataOut,validOut] = HDLCIC_maxR8(dataIn,validIn,R)
%HDLCIC_maxR8
% Performs CIC decimation with an input decimation factor up to 8.
% dataIn is a scalar fixed-point value.
% validIn is a logical scalar value.

 persistent cic8;
 if isempty(cic8)
 cic8 = dsphdl.CICDecimator('DecimationSource','Input port', ...
 'MaxDecimationFactor',8, ...
 'DifferentialDelay',1, ...
 'NumSections',3);
 end
 [dataOut,validOut] = cic8(dataIn,validIn,R);
end

The example uses the HDLCIC_vec function for a vector input.

function [dataOut,validOut] = HDLCIC_vec(dataIn,validIn)
%HDLCIC_vec
% Performs CIC decimation with an input vector.
% dataIn is a fixed-point vector.
% validIn is a logical scalar value.

 persistent cicVec;
 if isempty(cicVec)
 cicVec = dsphdl.CICDecimator('DecimationSource','Property', ...
 'DecimationFactor',8, ...
 'DifferentialDelay',1, ...
 'NumSections',3);
 end
 [dataOut,validOut] = cicVec(dataIn,validIn);
end

To flush the remaining data, run the object by inserting the required number of idle cycles after each
frame using the latency variable. For more information, see “Latency” on page 2-30.

Initialize the output to a size large enough to accommodate the output data. The final size is smaller
than totalsamples due to decimation.

latency = floor((vecSize - 1)*(N/vecSize)) + 1 + N + (2+(vecSize+1)*N) + 9;
dataOut = zeros(1,totalsamples+numFrames*latency);
validOut = zeros(1,totalsamples+numFrames*latency);
idx=0;
for ij = 1:numFrames
 if scalar
 % scalar input with variable decimation
 for ii = 1:length(dataSamples{ij})
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_maxR8(...
 dataSamples{ij}(ii), ...
 true, ...
 fi(varRValue(ij),0,12,0));

 dsphdl.CICDecimator

2-25

 end
 for ii = 1:latency
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_maxR8(...
 fi(0,1,16,8), ...
 false, ...
 fi(varRValue(ij),0,12,0));
 end

 else
 % vector input with fixed decimation
 for ii = 1:size(dataSamples{ij},2) %#ok
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_vec(...
 dataSamples{ij}(:,ii), ...
 true);
 end
 for ii = 1:latency
 idx = idx+1;
 [dataOut(idx),validOut(idx)] = HDLCIC_vec(...
 fi(zeros(vecSize,1),1,16,8), ...
 false);
 end
 end
end

Compare Function Output with Reference Data

Compare the function results against the output from the dsp.CICDecimator object.

cicOutput = dataOut(validOut==1);

fprintf('\nCIC Decimator\n');
difference = (abs(cicOutput-refOutput(1:length(cicOutput)))>0);
fprintf(['\nTotal number of samples differed between Behavioral ' ...
 'and HDL simulation: %d \n'],sum(difference));

CIC Decimator

Total number of samples differed between Behavioral and HDL simulation: 0

Explore Latency of CIC Decimator Object

The latency of the dsphdl.CICDecimator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICDecimator System object and request the latency. The default System object
filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic = dsphdl.CICDecimator

hdlcic =
 dsphdl.CICDecimator with properties:

2 System Objects

2-26

 DecimationSource: 'Property'
 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 GainCorrection: false

 Show all properties

L_def = getLatency(hdlcic)

L_def = 5

Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L_3sec = getLatency(hdlcic)

L_3sec = 6

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;
vecSize = 2;
L_wgain = getLatency(hdlcic,vecSize)

L_wgain = 25

Algorithms
CIC Decimation Filter

The transfer function of a CIC decimation filter is

H(z) = ∑
k = 0

RM − 1
z−k

N
=

1− z−RM N

1− z−1 N = 1
1− z−1 N ·

1− z−RM N

1 = HIN(z) · HcN(z) .

• HI is the transfer function of the integrator part of the CIC filter.
• HC is the transfer function of the comb part of the CIC filter.
• N is the number of sections. The number of sections in a CIC filter is defined as the number of

sections in either the comb part or the integrator part of the filter. This value does not represent
the total number of sections throughout the entire filter.

• R is the decimation factor.
• M is the differential delay.

CIC Filter Structure

The dsphdl.CICDecimator System object has the CIC filter structure shown in this figure. The
structure consists of N sections of cascaded integrators, a rate change factor of R, and N sections of
cascaded comb filters [1].

 dsphdl.CICDecimator

2-27

Designs can put the unit delay in the integrator part of the CIC filter in either the feedforward or
feedback path. These two configurations yield an identical filter frequency response. However, the
numerical outputs from these two configurations are different due to the latency of the paths. This
System object puts the unit delay in the feedforward path of the integrator.

Fixed and Variable Decimation

The System object downsamples the integrator stage output using R, either based on the fixed
decimation rate provided using the DecimationFactor property or the variable decimation rate
provided using the R input argument. At the downsampler stage, the System object uses a counter to
count the valid input samples, which depend on the decimation rate. Whenever the decimation rate
changes, the object resets and starts a new calculation from the next sample. This mechanism
prevents the System object from accumulating invalid values. Then, the System object provides the
decimated output to the comb part.

Gain Correction

The gain of the System object is given by Gain = (R x M)N.

• R is the DecimationFactor property value.
• M is the DifferentialDelay property value.
• N is the NumSections property value.

The System object implements gain correction in two parts: coarse gain and fine gain. In coarse gain
correction, the System object calculates the shift value, adds the shift value to the fractional bits to
create a numeric type, and then performs a bit-shift left. In fine gain correction, the System object
divides the remaining gain with the coarse gain if the gain is not a power of 2 and then multiplies the
coarse gain corrected value with the inverse value of fine gain. All possible shift and fine gain values
are precalculated and stored in an array before the System object starts processing.

You can modify this equation as Gain = 2cGain x fGain, where cGain means coarse gain and fGain
means fine gain.

• cGain = f loor(log2Gain)
• fGain = Gain/2cGain = Gain x 2−cGain

To perform GainCorrection when the InterpolationSource property is set to 'Input port',
the System object sets the output data type configured with the maximum decimation rate and bit-
shifts left for all the values under the maximum decimation rate. The bit-shift value is equal to
Maximum gain − log2(current gain).

Output Data Type

This section explains how the System object determines the output data type. For example, consider a
filter with DecimationFactor, DifferentialDelay, and NumSections values of 8, 1, and 3,
respectively, with an input width of 16 bits.

The output word length is calculated as BOut = BIn + [log2(Gain)].

2 System Objects

2-28

• Gain = (R x M)N

• BIn is the input word length.
• BOut is the output word length.

When you set the OutputDataType property to 'Full precision', the System object returns data
with a word length of 25 bits, by adding nine gain bits to the input word length.

When you set the OutputDataType property to 'Same word length as input', the object
outputs data with a word length of 16, which is the same length as the input word length. The
internal integrator and comb stages use the full-precision data type with 25 bits.

When you set the OutputDataType property to 'Minimum section word lengths' and the
OutputWordLength property to 16, the System object returns data with a word length of 16 bits. In
this case, the object changes the bit width at each stage, based on the pruning algorithm.

If the OutputWordLength property value is less than the number of bits requested at the output, the
least significant bits (LSBs) at the earlier stages are pruned. The Hogenauer algorithm provides the
number of LSBs to discard at each stage. This algorithm minimizes the loss of information in the
output data [1].

 dsphdl.CICDecimator

2-29

Latency

The latency of the System object varies depending on the type of input, the decimation you specify,
the number of sections, and the value of the GainCorrection property. This table shows the latency
of the System object. N is the number of sections and vecLen is the length of the vector.

Input
Data

Output
Data

Decimation
Type

Gain
Correction

Latency in Clock Cycles

Scalar Scalar Fixed off 3 + N. When R = 1, 2 + N.
on 3 + N + 9. When R = 1, 2 + N + 9.

Scalar Scalar Variable off 4 + N. When Rmax = 1, 3 + N.
on 4 + N + 9. When Rmax = 1, 3 + N + 9.

Vector Scalar Fixed off floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N

on floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N) + 9

Vector Vector Fixed off floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N

on floor((vecLen – 1) x (N/vecLen)) + 1 + N + (2 + (vecLen
+ 1) x N) + 9

Note For vector inputs, the System object does not support variable decimation.

Scalar Input

This section shows the output of the System object for a scalar input with different R, M, and N
values.

This figure shows the output of the System object with the default configuration, that is, with a fixed
decimation rate and DecimationFactor, DifferentialDelay, and NumSections values of 2, 1,
and 2, respectively. The System object returns valid output data at every second cycle based on the
fixed DecimationFactor value of 2. The latency of the System object is 5 clock cycles, calculated as
3 + N.

This figure shows the output of the System object with a fixed decimation rate, DecimationFactor,
DifferentialDelay, and NumSections values of 8, 1, and 3, respectively, and GainCorrection
set to true. The System object returns valid output data at every eighth cycle based on the fixed
DecimationFactor value of 8. The latency of the object is 15 clock cycles and is calculated as 3 + N
+ 9.

2 System Objects

2-30

This figure shows the output of the System object for variable R values of 2, 4, and 8 along with M
and N values of 1 and 3. The GainCorrection property is set to false. The System object returns
valid output data at the second, fourth, and eighth cycles corresponding to the R values 2, 4, and 8,
respectively. The System object accepts R argument value changes only when the input validIn is 1
(true). The latency of the System object is 7 clock cycles, calculated as 4 + N.

Vector Input

This section shows the output of the System object for a vector input with different R, M, and N
values.

This figure shows the output of the System object for a two-element column vector input with the
default configuration, that is, with a fixed decimation rate and DecimationFactor,
DifferentialDelay, and NumSections values of 2, 1, and 2, respectively. The latency of the object
is 12 clock cycles.

This figure shows the output of the System object for an eight-element column vector input with a
fixed decimation rate, R, M, and N values of 8, 1, and 3, respectively, and GainCorrection set to
true. The latency of the object is 44 clock cycles.

 dsphdl.CICDecimator

2-31

Performance

The performance of the synthesized HDL code varies with your target and synthesis options. It also
varies based on the input data type.

This table shows the resource and performance data synthesis results of the object for a scalar input
of type fixdt(1,16,0) with fixed and variable decimation rates and for a two-element column
vector input with fixed decimation rate DecimationFactor, DifferentialDelay, and
NumSections values are 2, 1, and 2, respectively. The generated HDL is targeted to the Xilinx
Zynq-7000 ZC706 Evaluation Board.

Input Data Decimation Type Slice LUTs Slice Registers Maximum Frequency in
MHz

Scalar Fixed rate 101 166 711.74
Variable rate 206 186 441.70

Vector Fixed rate 218 627 624.61

The resources and frequencies vary based on the type of input data and the values of R, M, and N, as
well as other properties. Using a vector input can increase the throughput, however, doing so also
increases the number of hardware resources that the System object uses.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLCICDecimation, and was included in the
DSP System Toolbox.

Changes to decimation factor arguments
Behavior changed in R2022a

• In previous releases, a decimation factor of 1 was invalid. You can now set the decimation factor to
1.

2 System Objects

2-32

Configuration Before R2022a After 2022a
Variable decimation factor Select the

VariableDownsample
property and set the
DecimationFactor
parameter to the maximum
expected decimation factor.

Set the DecimationSource
property to Input port and
set the
MaxDecimationFactor
property to the maximum
expected decimation factor.
The decimFactor port is
renamed to R.

Fixed decimation factor Clear the
VariableDownsample
property and set the
DecimationFactor property
to the desired decimation
factor.

Set the DecimationSource
property to Property and set
the DecimationFactor
property to the desired
decimation factor.

• ResetIn property is renamed to ResetInputPort.

References
[1] Hogenauer, E. “An Economical Class of Digital Filters for Decimation and Interpolation.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 29, no. 2 (April 1981): 155–62.
https://doi.org/10.1109/TASSP.1981.1163535.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsphdl.CICInterpolator

Blocks
CIC Decimator | CIC Interpolator

Introduced in R2019b

 dsphdl.CICDecimator

2-33

dsphdl.FIRFilter
Package: dsphdl

Finite impulse response filter

Description
The dsphdl.FIRFilter System object models finite-impulse response filter architectures optimized
for HDL code generation. The object accepts scalar or vector input, and provides an option for
programmable coefficients. It provides a hardware-friendly interface with input and output control
signals. To provide a cycle-accurate simulation of the generated HDL code, the object models
architectural latency including pipeline registers and resource sharing.

The object provides three filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation and is suitable for FPGA and ASIC
applications. The partly-serial systolic architecture provides a configurable serial implementation that
makes efficient use of FPGA DSP blocks. For a filter implementation that matches multipliers,
pipeline registers, and pre-adders to the DSP configuration of your FPGA vendor, specify your target
device when you generate HDL code.

All three structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

The latency between valid input data and the corresponding valid output data depends on the filter
structure, serialization options, the number of coefficients, and whether the coefficient values provide
optimization opportunities.

To filter input data with an HDL-optimized FIR filter:

1 Create the dsphdl.FIRFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firFilt = dsphdl.FIRFilter
firFilt = dsphdl.FIRFilter(num)
firFilt = dsphdl.FIRFilter(___ ,Name,Value)

Description

firFilt = dsphdl.FIRFilter creates an HDL-optimized discrete FIR filter System object,
firFilt, with default properties.

2 System Objects

2-34

firFilt = dsphdl.FIRFilter(num) creates a filter with the Numerator property set to num.

firFilt = dsphdl.FIRFilter(___ ,Name,Value)sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

For example:
Numerator = firpm(10,[0,0.1,0.5,1],[1,1,0,0]);
fir = dsphdl.FIRFilter(Numerator,'FilterStructure','Direct form transposed');
...
[dataOut,validOut] = fir(dataIn,validIn);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

NumeratorSource — Source of filter coefficients
'Property' (default) | 'Input port (Parallel interface)'

You can enter constant filter coefficients as a property or provide time-varying filter coefficients using
an input argument.

Setting this property to 'Input port (Parallel interface)' enables the coeff argument, and
the NumeratorPrototype property. Specify a prototype to enable the object to optimize the filter
implementation according to the symmetry of your coefficients. To use 'Input port (Parallel
interface)', set the FilterStructure property to 'Direct form systolic' or 'Direct
form transposed'.

Numerator — Discrete FIR filter coefficients
[0.5 0.5] (default) | real or complex vector

Discrete FIR filter coefficients, specified as a vector of real or complex values. You can also specify
the vector as a workspace variable, or as a call to a filter design function. When the input data type is
a floating-point type, the object casts the coefficients to the same data type as the input. When the
input data type is an integer type or a fixed-point type, you can modify the coefficient data type by
using the CoefficientsDataType property.
Example: dsphdl.FIRFIlter('Numerator',firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]))
defines coefficients using a linear-phase filter design function.

Dependencies

To enable this property, set NumeratorSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

NumeratorPrototype — Prototype filter coefficients
[] (default) | real or complex vector

 dsphdl.FIRFilter

2-35

Prototype filter coefficients, specified as a vector of real or complex values. The prototype specifies a
sample coefficient vector that is representative of the symmetry and zero-value locations of the
expected input coefficients. If all of your input coefficient vectors have the same symmetry and zero-
value coefficient locations, set NumeratorPrototype to one of those vectors. If your coefficients are
unknown or not expected to share symmetry or zero-value locations, set NumeratorPrototype to
[]. The object uses the prototype to optimize the filter by sharing multipliers for symmetric or
antisymmetric coefficients and by removing multipliers for zero-value coefficients.

Coefficient optimizations affect the expected size of the coeff input argument. Provide only the
nonduplicate coefficients as the argument. For example, if you set the NumeratorPrototype
property to a symmetric 14-tap filter, the object shares one multiplier between each pair of duplicate
coefficients, so the object expects a vector of 7 values for the coeff argument. You must still provide
zeros in the input coeff vector for the nonduplicate zero-value coefficients.

Dependencies

To enable this property, set NumeratorSource to 'Input port (Parallel interface)'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed' | 'Partly serial
systolic'

HDL filter architecture, specified as one of these structures:

• 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

• 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”.

• 'Partly serial systolic' — This architecture provides a serial filter implementation and
options for tradeoffs between throughput and resource utilization. It makes efficient use of Intel
and Xilinx DSP blocks. The object implements a serial L-coefficient filter with M multipliers and
requires input samples that are at least N cycles apart, such that L = N×M. You can specify either
M or N. For this implementation, the object provides an output signal, ready, that indicates when
the object is ready for new input data. For architecture and performance details, see “Partly Serial
Systolic Architecture (1 < N < L)” and “Fully Serial Systolic Architecture (N ≥ L)”. You cannot use
frame-based input with the partly-serial architecture.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

SerializationOption — Rule to define serial implementation
'Minimum number of cycles between valid input samples' (default) | 'Maximum number
of multipliers'

Specify the rule that the object uses to serialize the filter as one of:

• 'Minimum number of cycles between valid input samples' – Specify a requirement for
input data timing by using the NumCycles property.

• 'Maximum number of multipliers' – Specify a requirement for resource usage by using the
NumberOfMultipliers property.

2 System Objects

2-36

For a filter with L coefficients, the object implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = N×M. The object might
remove additional multipliers when it applies coefficient optimizations, so the actual M or N values of
the filter implementation can be lower than the value that you specified.

Dependencies

To enable this property, set FilterStructure to 'Partly serial systolic'.

NumCycles — Serialization requirement for input timing
2 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This property represents N,
the minimum number of cycles between valid input samples. In this case, the object calculates M =
L/N. To implement a fully-serial architecture, set NumCycles to a value greater than the filter length,
L, or to Inf.

The object might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter can be lower than the value you specified.

Dependencies

To enable this property, set FilterStructure to 'Partly serial systolic' and set
SerializationOption to 'Minimum number of cycles between valid input samples'.

NumberOfMultipliers — Serialization requirement for resource usage
2 (default) | positive integer

Serialization requirement for resource usage, specified as a positive integer. This property represents
M, the maximum number of multipliers in the filter implementation. In this case, the object calculates
N = L/M. If the input data is complex, the object allocates floor(M/2) multipliers for the real part
of the filter and floor(M/2) multipliers for the imaginary part of the filter. To implement a fully-
serial architecture, set NumberOfMultipliers to 1 for real input with real coefficients, 2 for
complex input and real coefficients or real coefficients with complex input, or 3 for complex input and
complex coefficients.

The object might remove multipliers when it applies coefficient optimizations, so the actual M and N
values of the filter can be lower than the value you specified.

Dependencies

To enable this property, set the FilterStructure to 'Partly serial systolic', and set
SerializationOption to 'Maximum number of multipliers'.

Data Types

Rounding — Rounding method for type-casting the output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The rounding method is used when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores the RoundingMethod property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

 dsphdl.FIRFilter

2-37

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. Overflow
handling is used when casting the output to the data type specified by the OutputDataType
property. When the input data type is floating point, the object ignores the OverflowAction
property. For more details, see “Overflow Handling”.

CoefficientsDataType — Data type of discrete FIR filter coefficients
'Same word length as input' (default) | numerictype object

Data type of discrete FIR filter coefficients, specified as 'Same word length as input' or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the filter coefficients of the discrete FIR filter to the specified data type. The
quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is floating point, the object ignores the Coefficients property.

Dependencies

To enable this property, set NumeratorSource to 'Property'.

OutputDataType — Data type of discrete FIR filter output
'Full precision' (default) | 'Same word length as input' | numerictype object

Data type of discrete FIR filter output, specified as 'Same word length as input', 'Full
precision', or a numerictype object. To specify a numerictype object, call
numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the output of the discrete FIR filter to the specified data type. The quantization
uses the settings of the RoundingMethod and OverflowAction properties. When the input data
type is floating point, the object ignores the OutputDataType property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

When you specify a fixed set of coefficients, usually the actual full-precision internal word length is
smaller than WF because the values of the coefficients limit the potential growth. When you use
programmable coefficients, the object cannot calculate the dynamic range, and the internal data type
is always WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

2 System Objects

2-38

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect data path registers to generated HDL global reset signal, specified as true or
false. Set this property to true to connect the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation behavior in
MATLAB. When you set this property to false, the generated HDL global reset clears only the
control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax
[dataOut,validOut] = firFilt(dataIn,validIn)
[dataOut,validOut,ready] = firFilt(dataIn,validIn)
[dataOut,validOut] = firFilt(dataIn,validIn,coeff)
[dataOut,validOut] = firFilt(dataIn,validIn,reset)

Description

[dataOut,validOut] = firFilt(dataIn,validIn) filters the input data only when validIn is
true.

[dataOut,validOut,ready] = firFilt(dataIn,validIn) returns ready set to true when
the object is ready to accept new input data on the next call.

The object returns the ready argument only when you set the FilterStructure property to
'Partly serial systolic'. For example:
firFilt = dsphdl.FIRFilter(Numerator,...
 'FilterStructure','Partly serial systolic',...
 'SerializationOption','Minimum number of cycles between valid input samples',...
 'NumCycles',8)
...
for k=1:length(dataIn)
 [dataOut,validOut,ready] = firFilt(dataIn(k),validIn(k));

[dataOut,validOut] = firFilt(dataIn,validIn,coeff) filters data using the coefficients,
coeff. The object expects the coeff argument only when you set the NumeratorSource property
to 'Input port (Parallel interface)'. For example:
firFilt = dsphdl.FIRFilter(NumeratorSource,'Input Port (Parallel interface)')
...
for k=1:length(dataIn)
 Numerator = myGetNumerator(); %calculate coefficients
 [dataOut,validOut] = firFilt(dataIn(k),validIn(k),Numerator);

 dsphdl.FIRFilter

2-39

[dataOut,validOut] = firFilt(dataIn,validIn,reset) filters data when reset is false.
When reset is true, the object resets the filter registers. The object expects the reset argument
only when you set the ResetInputPort property to true. For example:

firFilt = dsphdl.FIRFilter(Numerator,'ResetInputPort',true)
...
% reset the filter
firFilt(0,false,true);
for k=1:length(dataIn)
 [dataOut,validOut] = firFilt(dataIn(k),validIn(k),false);

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Input Arguments

dataIn — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values. When the input data type
is an integer type or fixed-point type, the object uses fixed-point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

coeff — Filter coefficients
real or complex vector

Filter coefficients, specified as a vector of real or complex values. You can change the input
coefficients at any time. The size of the vector depends on the size and symmetry of the sample
coefficients specified in the NumeratorPrototype property. The prototype specifies a sample
coefficient vector that is representative of the symmetry and zero-value locations of the expected
input coefficients. The object uses the prototype to optimize the filter by sharing multipliers for
symmetric or antisymmetric coefficients, and removing multipliers for zero-value coefficients.
Therefore, provide only the nonduplicate coefficients in the argument. For example, if you set the
NumeratorPrototype property to a symmetric 14-tap filter, the object expects a vector of 7 values
for the coeff argument. You must still provide zeros in the input coeff vector for the nonduplicate
zero-value coefficients.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this argument, set the NumeratorSource property to 'Input port (Parallel
interface)'.

2 System Objects

2-40

Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — Filtered output data
scalar or column vector of real or complex values

Filtered output data, returned as a scalar or column vector of real or complex values. The dimensions
of the output data match the dimensions of the input data. When the input data is floating point, the
output data inherits the data type of the input data. When the input data is an integer type or fixed-
point type, the OutputDataType property determines the output data type.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

ready — Indicates object is ready for new input data
scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.

When using the partly-serial architecture, the object processes one sample at a time. If your design
waits for the object to return ready set to 0 (false) before de-asserting validIn, then one extra
input data value arrives at the object. The object stores this extra data while processing the current
data, and then does not set ready to 1 (true) until the extra input is processed.

Dependencies

To enable this argument, set the FilterStructure property to 'Partly serial systolic'.
Data Types: logical

 dsphdl.FIRFilter

2-41

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.FIRFilter
getLatency Latency of FIR filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create HDL FIR Filter System Object with Default Settings

Create an HDL FIR filter System object with default settings.

firFilt = dsphdl.FIRFilter;

Create an input signal of random noise, and allocate memory for outputs.

L = 100;
dataIn = randn(L,1);
dataOut = zeros(L,1);
validOut = false(L,1);

Call the object on the input signal, asserting that the input data is always valid. The object processes
one data sample at a time.

for k=1:L
 [dataOut(k),validOut(k)] = firFilt(dataIn(k),true);
end

Implement a Partly-Serial Streaming FIR Filter

This example shows how to configure the dsphdl.FIRFilter System object™ as a partly-serial 31-
tap lowpass filter.

Design the filter coefficients. Then create an HDL FIR filter System object. Set the
FilterStructure to 'Partly serial systolic'. By default, the SerializationOption
property is 'Minimum number of cycles between valid input samples', and so you must
specify the serialization rule using the NumCycles property. To share each multiplier between 10
coefficients, set the NumCycles to 10.

numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
numCycles = 10;

2 System Objects

2-42

firFilt = dsphdl.FIRFilter('Numerator',numerator, ...
 'FilterStructure','Partly serial systolic','NumCycles',numCycles);

This serial filter implementation requires 10 time steps to calculate each output. Create input signals
dataIn and validIn such that new data is applied only every NumCycles time steps.

L = 16;
x = fi(randn(L,1),1,16);
dataIn = zeros(L*numCycles,1,'like',x);
dataIn(1:numCycles:end) = x;
validIn = false(L*numCycles,1);
validIn(1:numCycles:end) = true;

Create a LogicAnalyzer object to view the inputs and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',5, ...
 'SampleTime',1,'TimeSpan',length(dataIn));
tags = getDisplayChannelTags(la);
modifyDisplayChannel(la,tags{1},'Name','dataIn');
modifyDisplayChannel(la,tags{2},'Name','validIn');
modifyDisplayChannel(la,tags{3},'Name','dataOut');
modifyDisplayChannel(la,tags{4},'Name','validOut');
modifyDisplayChannel(la,tags{5},'Name','ready');

Call the filter System object on the input signals, and view the results in the Logic Analyzer. The
object models HDL pipeline registers and resource sharing, so the waveform shows an initial delay
before the object returns valid output samples.

for k=1:length(dataIn)
 [dataOut,validOut,ready] = firFilt(dataIn(k),validIn(k));
 la(dataIn(k),validIn(k),dataOut,validOut,ready)
end

 dsphdl.FIRFilter

2-43

Create HDL FIR Filter System Object for HDL Code Generation

To generate HDL code from a System object™, create a function that contains and calls the object.

Create Function

Write a function that creates and calls an 11-tap HDL FIR filter System object. You can generate HDL
code from this function.

function [dataOut,validOut] = HDLFIR11Tap(dataIn, validIn)
%HDLFIR11Tap
% Process one sample of data by using the dsphdl.FIRFilter System
% object.
% dataIn is a fixed-point scalar value.
% You can generate HDL code from this function.
 persistent fir
 if isempty(fir)

2 System Objects

2-44

 Numerator = firpm(10,[0 0.1 0.5 1],[1 1 0 0]);
 fir = dsphdl.FIRFilter('Numerator',Numerator);
 end
 [dataOut,validOut] = fir(dataIn,validIn);
end

Create Test Bench for Function

Clear the workspace, create an input signal of random noise, and allocate memory for outputs.

clear variables
clear HDLFIR11Tap
L = 200;
dataIn = fi(randn(L,1),1,16);
validIn = ones(L,1,'logical');
dataOut = fi(zeros(L,1),1,16);
validOut = false(L,1);

Call the function on the input signal.

for k = 1:L
 [dataOut(k),validOut(k)] = HDLFIR11Tap(dataIn(k), validIn(k));
end

Plot the signals with the Logic Analyzer.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1,'TimeSpan',L);
tags = getDisplayChannelTags(la);
modifyDisplayChannel(la,tags{1},'Name','validIn');
modifyDisplayChannel(la,tags{2},'Name','dataIn');
modifyDisplayChannel(la,tags{3},'Name','dataOut');
modifyDisplayChannel(la,tags{4},'Name','validOut');
la(validIn,dataIn,dataOut,validOut)

 dsphdl.FIRFilter

2-45

Explore Latency of FIR Object

The latency of the dsphdl.FIRFilter System object™ varies with filter structure, serialization
options, input vector size, and whether the coefficient values provide optimization opportunities. Use
the getLatency function to find the latency of a particular configuration. The latency is the number
of cycles between the first valid input and the first valid output.

Create a dsphdl.FIRFilter System object™ and request the latency. The default architecture is
fully parallel systolic. The default data type for the coefficients is 'Same word length as input'.
Therefore, when you call the getLatency object function, you must specify an input data type. The
object casts the coefficient values to the input data type, and then checks for symmetric coefficients.
This Numerator has 31 symmetric coefficients, so the object optimizes for the shared coefficients,
and implements 16 multipliers.

Numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
Input_type = numerictype(1,16,15); % object uses only the word length for coefficient type cast
hdlfir = dsphdl.FIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

2 System Objects

2-46

L_sysp = 23

For the same fully parallel filter with vector input, the latency is lower. Call getLatency with an
input vector size of four to check the latency for that case. The empty arguments are placeholders for
when you use programmable coefficients or complex input data.

L_syspv = getLatency(hdlfir,Input_type,[],[],4)

L_syspv = 17

Check the latency for a partly serial systolic implementation of the same filter. By default, the
SerializationOption property is 'Minimum number of cycles between valid input
samples', and so you must specify the serialization rule using the NumCycles property. To share
each multiplier between 8 coefficients, set the NumCycles to 8. The object then optimizes based on
the coefficient symmetry, so there are 16 unique coefficients shared 8 times each over 2 multipliers.
This serial filter implementation requires input samples that are valid every 8 cycles.

hdlfir = dsphdl.FIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic','NumCycles',8);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 19

Check the latency of a nonsymmetric fully parallel systolic filter. The Numerator has 31 coefficients.

Numerator = sinc(0.4*[-30:0]);
hdlfir = dsphdl.FIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 37

Check the latency of the same nonsymmetric filter implemented as a partly serial systolic filter. In this
case, specify the SerializationOption by the number of multipliers. The object implements a
filter that has 2 multipliers and requires 8 cycles between input samples.

hdlfir = dsphdl.FIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic',...
 'SerializationOption','Maximum number of multipliers','NumberOfMultipliers',2);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 37

Check the latency of a fully parallel transposed architecture. The latency for this filter structure with
scalar input is always 6 cycles.

hdlfir = dsphdl.FIRFilter('Numerator',Numerator,'FilterStructure','Direct form transposed');
L_trans = getLatency(hdlfir,Input_type)

L_trans = 6

The latency of the transposed filter increases with input vector size.

L_transv4 = getLatency(hdlfir,Input_type,[],[],4)

L_transv4 = 9

L_transv8 = getLatency(hdlfir,Input_type,[],[],16)

L_transv8 = 11

 dsphdl.FIRFilter

2-47

Algorithms
This System object implements the algorithms described on the Discrete FIR Filter block reference
page.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLFIRFilter and was part of the DSP System
Toolbox product.

High-throughput interface

This object supports high-throughput data. You can apply input data as a N-by-1 vector, where N can
be up to 64 values. You cannot use frame-based input with the partly-serial architecture.

Input coefficients must be a row vector
Behavior changed in R2022a

When you use programmable coefficients with this object, you must supply the coefficients as a row
vector (1-by-N matrix). Before R2022a, the object accepted a one-dimensional array (for example,
ones(5)), a column vector(M-by-1 matrix), or a row vector of coefficients.

RAM-based party-serial architecture

This object uses a RAM-based partly-serial architecture which uses fewer resources than the former
register-based architecture. Uninitialized RAM locations can result in X values at the start of your
HDL simulation. You can avoid X values by having your test initialize the RAM, or by enabling the
Initialize all RAM blocks Configuration Parameter. This parameter sets the RAM locations to 0 for
simulation and is ignored by synthesis tools.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

2 System Objects

2-48

See Also
Blocks
Discrete FIR Filter

Objects
dsp.FIRFilter

Introduced in R2017a

 dsphdl.FIRFilter

2-49

dsphdl.FarrowRateConverter
Package: dsphdl

Polynomial sample-rate converter

Description
The dsphdl.FarrowRateConverter System object converts the sample rate of a signal by using
FIR filters to implement a polynomial sinc approximation. A Farrow filter is an efficient rate converter
when the rate conversion factor is a ratio of large integer decimation and interpolation factors.
Specify the rate conversion factor by providing the input sample rate and the desired output sample
rate. You can provide the rate conversion factor as a fixed property or as a time-varying input signal.

You can use this object with the default coefficients for most rate conversions. The default coefficients
are a LaGrange interpolation that matches the dsp.FarrowRateConverter System object. Or, you
can specify a custom set of coefficients if the default does not meet your specifications.

The object provides a hardware-friendly interface with input and output control signals. To provide a
cycle-accurate simulation of the generated HDL code, the object models architectural latency
including pipeline registers and multiplier optimizations.

To filter and resample input data with an HDL-optimized Farrow rate converter:

1 Create the dsphdl.FarrowRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
rc = dsphdl.FarrowRateConverter
rc = dsphdl.FarrowRateConverter(Name,Value)

Description

rc = dsphdl.FarrowRateConverter creates an HDL-optimized Farrow filter System object with
default properties.

rc = dsphdl.FarrowRateConverter(Name,Value) sets properties by using one or more name-
value pairs. Enclose each property name in single quotes.

For example:
rc = dsphdl.FarrowRateConverter('RateChange',441e3/96e3, ...
 'FilterStructure','Direct form transposed');
[dataOut,validOut,ready] = rc(dataIn,validIn);

2 System Objects

2-50

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

RateChangeSource — Source of rate change
'Property' (default) | 'Input port'

You can enter a constant rate change as a property or provide a time-varying rate change by using an
input argument.

Setting this property to 'Input port' enables the rate argument of the object.

RateChange — Rate change factor
147/160 (default) | positive real scalar

Specify the rate change factor as a ratio of the input sample rate and the output sample rate, Fin/
Fout, or provide a rational value. There are no limits on the rate change factor. Specify the data type
for this value by using the RateChangeDataType property.

Dependencies

To enable this property, set RateChangeSource to 'Property'.
Data Types: double

Coefficients — FIR filter coefficients
[-1/6 1/2 -1/3 0;1/2 -1 -1/2 1;-1/2 1/2 1 0;1/6 0 -1/6 0] (default) | matrix of real
values

Specify FIR filter coefficients as an M-by-N matrix of real values, where N is the number of filters and
M is the number of coefficients in each filter. N must be less than six. The object implements a
polynomial of order N – 1. The default value is a special closed-form LaGrange solution that
accomplishes most rate changes.
Data Types: double

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed'

Specify the HDL filter architecture as one of these structures:

• 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

• 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”.

 dsphdl.FarrowRateConverter

2-51

This object implements the FIR filter stages by using the same architectures as the
dsphdl.FIRFilter object. All implementations share multipliers for symmetric and antisymmetric
coefficients and remove multipliers for zero-valued coefficients.

Data Types

Rounding — Rounding method for type-casting the output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The rounding method is used when casting the output to the data
type specified by the OutputDataType property. When the input data type is a floating-point data
type, the object ignores the RoundingMethod property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. Overflow
handling is used when casting the output to the data type specified by the OutputDataType
property. When the input data type is a floating-point data type, the object ignores the
OverflowAction property. For more details, see “Overflow Handling”.

CoefficientsDataType — Data type of discrete FIR filter coefficients
'Same word length as input' (default) | numerictype object

Data type of discrete FIR filter coefficients, specified as 'Same word length as input' or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the filter coefficients of the discrete FIR filter to the specified data type. The
quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is a floating-point data type, the object ignores this property.

The recommended data type for this parameter is 'Same word length as input'. When
selecting this data type, consider the size supported by the DSP blocks on your target FPGA.

RateChangeDataType — Data type of rate change factor
fixdt(1,16) (default) | <data type expression>

The object casts the RateChange property value to this data type and uses this data type to derive
the data type for the internal accumulator. The accumulator data type is fixdt(1,fractionalWL
+1,fractionalWL), where fractionalWL is the fraction length of the rate change data type. The
quantization rounds to the nearest representable value and saturates on overflow. When the input
data type is floating point, the object ignores this parameter.

The data type of the rate change must have at least one integer bit and one fractional bit. This data
type must have enough integer bits to represent the fsIn/fsOut value. If the data type specified
does not have enough integer bits, the object returns an error. The default setting does not specify a
number of fractional bits, so the object can compute the necessary integer size. The fractional part of
this data type determines the accuracy of the phase timing, but also increases the critical path. When

2 System Objects

2-52

the rate change word length is large, you can limit hardware resources by fitting the multiplicand
data type to the DSP blocks on the FPGA.
Dependencies

To enable this port, set the RateChangeSource parameter to 'Property'.

MultiplicandDataType — Data type of multiplicand
'Full precision' (default) | <data type expression>

The object casts the output of the accumulator to this data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is a floating-point
data type, the object ignores this parameter. When the rate change is large, you can limit hardware
resource use by controlling the multiplicand data type. When selecting this data type, consider the
size supported by the DSP blocks on your target FPGA.

OutputDataType — Data type of filter output
'Same word length as input' (default) | <data type expression>

The object casts the output of each filter stage to this data type. The quantization uses the settings of
the RoundingMethod and OverflowAction properties. When the input data type is a floating-point
data type, the object ignores this parameter.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect data path registers to generated HDL global reset signal, specified as true or
false. Set this property to true to connect the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation behavior in
MATLAB. When you set this property to false, the generated HDL global reset clears only the
control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax
[dataOut,validOut,ready] = rc(dataIn,validIn)

 dsphdl.FarrowRateConverter

2-53

[dataOut,validOut,ready] = rc(dataIn,validIn, rate)

Description

[dataOut,validOut,ready] = rc(dataIn,validIn) filters the input data only when validIn
is true, and returns ready set to true when the object is ready to accept new input data on the next
call.

[dataOut,validOut,ready] = rc(dataIn,validIn, rate) filters data to achieve the input to
output sample rate ratio, rate. The object expects the rate argument only when you set the
RateChangeSource property to 'Input port'. For example:
rc = dsphdl.FarrowRateConverter('RateChangeSource','Input port')
...
for k=1:length(dataIn)
 rate = myGetRate(); %calculate desired rate change
 [dataOut(k),validOut(k)] = rc(dataIn(k),validIn(k),rate);

Input Arguments

dataIn — Input data
real or complex scalar

Input data, specified as a real or complex scalar. When the input data type is an integer type or fixed-
point type, the object uses fixed-point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

rate — Rate change factor
scalar

Specify the rate change factor as a rational value that is the ratio of the input sample rate and the
output sample rate, Fin/Fout. There are no limits on the rate change factor.

When this input value changes, the object resets the internal phase accumulator. This reset means
you can change the rate change factor from decimation to interpolation. For example, you can use
this object to align data streams that have similar but varying sample clocks.

The data type of the rate change must have at least one integer bit and one fractional bit. The object
derives the data type of the internal accumulator from the data type of this signal. The accumulator
data type is fixdt(1,fractionalWL+1,fractionalWL), where fractionalWL is the fraction length
of the rate change data type. The fractionalWL determines the accuracy of the phase timing, but also
increases the critical path. When the rate change word length is large, you can limit hardware
resource use by fitting the multiplicand data type to the DSP blocks on the FPGA. .

2 System Objects

2-54

Dependencies

To enable this port, set the RateChangeSource parameter to 'Input port'.
Data Types: fi

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — Filtered output data
real or complex scalar

Filtered output data, returned as a real or complex scalar. When the input data type is a floating-point
data type, the output data inherits the data type of the input data. When the input data type is an
integer type or fixed-point type, the OutputDataType property determines the output data type.
Data Types: fi | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

 dsphdl.FarrowRateConverter

2-55

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Algorithms
This System object implements the algorithms described on the Farrow Rate Converter block
reference page.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Blocks
Farrow Rate Converter

Objects
dsphdl.FIRFilter

Introduced in R2022a

2 System Objects

2-56

dsphdl.NCO
Package: dsphdl

Generate real or complex sinusoidal signals

Description
The NCO System object generates real or complex sinusoidal signals, while providing hardware-
friendly control signals. A numerically-controlled oscillator (NCO) accumulates a phase increment
and uses the quantized output of the accumulator as the index to a lookup table that contains the sine
wave values. The wrap around of the fixed-point accumulator and quantizer data types provide
periodicity of the sine wave, and quantization reduces the necessary size of the table for a given
frequency resolution.

For an example of how to generate a sine wave using this System object, see “Design a HDL-
Compatible NCO Source” on page 2-66. For more information on configuration and implementation,
refer to the “Algorithms” on page 1-51 section.

The NCO System object provides these features.

• Optional frame-based output.
• A lookup table compression option to reduce the lookup table size. This compression results in

less than one LSB loss in precision. See “Lookup Table Compression” on page 2-68 for more
information.

• An optional input argument for external dither.
• An optional reset argument that resets the phase accumulator to its initial value.
• An optional output argument for the current NCO phase.

To generate real or complex sinusoidal signals:

1 Create the dsphdl.NCO object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

 dsphdl.NCO

2-57

Creation

Syntax
hdlnco = dsphdl.NCO
hdlnco = dsphdl.NCO(Name,Value)
hdlnco = dsphdl.NCO(Inc,'PhaseIncrementSource','Property')

Description

hdlnco = dsphdl.NCO creates a numerically controlled oscillator (NCO) System object, hdlnco,
that generates a real or complex sinusoidal signal. The amplitude of the generated signal is always 1.

hdlnco = dsphdl.NCO(Name,Value) sets properties using one or more name-value pairs. Enclose
each property name in single quotes. For example,

hdlnco = dsphdl.NCO('NumQuantizerAccumulatorBits',12, ...
 'AccumulatorWL',16);

hdlnco = dsphdl.NCO(Inc,'PhaseIncrementSource','Property') creates an NCO with the
PhaseIncrement property set to Inc, an integer scalar. To use the PhaseIncrement property, set the
PhaseIncrementSource property to 'Property'. You can add other Name,Value pairs before or
after PhaseIncrementSource.

Properties

Note This object supports floating-point types for simulation but not for HDL code generation. When
all input values are fixed-point type or all input arguments are disabled, the object determines the
output type using the OutputDataType property. When any input value is floating-point type, the
object ignores the OutputDataType property. In this case, the object returns the waveform and
optional Phase as floating-point values.

Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Waveform Generation

PhaseIncrementSource — Source of phase increment
'Input port' (default) | 'Property'

You can set the phase increment with an input argument or by specifying a value for the property.
Specify 'Property' to configure the phase increment using the PhaseIncrement property. Specify
'Input port' to set the phase increment using the inc argument.

PhaseIncrement — Phase increment for generated waveform
100 (default) | integer

2 System Objects

2-58

Phase increment for generated waveform, specified as an integer. The object casts this value to match
the accumulator word length.

Dependencies

To enable this property, set the PhaseIncrementSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

PhaseOffsetSource — Source of phase offset
'Input port' (default) | 'Property'

You can set the phase offset with an input argument or by specifying a value for the property. Specify
'Property' to configure the phase increment using the PhaseOffset property. Specify 'Input
port' to set the phase increment using the offset argument.

PhaseOffset — Phase offset for generated waveform
0 (default) | integer

Phase offset for the generated waveform, specified as an integer.

Dependencies

To enable this property, set the PhaseOffsetSource property to 'Property'.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fixdt([],N,0)

DitherSource — Source of number of dither bits
'Input port' (default) | 'Property' | 'None'

You can set the number of dither bits from an input argument or from a property, or you can disable
dither. Specify 'Property' to configure the number of dither bits using the NumDitherBits
property. Specify 'Input port' to set the number of dither bits using the dither argument.
Specify 'None' to disable dither.

NumDitherBits — Bits used to express dither
4 (default) | positive integer

Number of dither bits, specified as a positive integer.

Dependencies

To enable this property, set the DitherSource property to 'Property'.

SamplesPerFrame — Vector size for frame-based output
1 (default) | positive integer

Vector size for frame-based output, specified as a positive integer. When you set this value to 1, the
object has scalar input and output. When this value is greater than 1, the Dither input argument
must be a column vector of length SamplesPerFrame and the Y and Phase output arguments return
column vectors of length SamplesPerFrame.

LUTCompress — Lookup table compression
false or 0 (default) | true or 1

Lookup table compression, specified as a logical 0 (false) or 1 (true). By default, the object
implements a noncompressed lookup table, and the output matches the output of the dsp.NCO

 dsphdl.NCO

2-59

System object. When you enable this option, the object implements a compressed lookup table. The
Sunderland compression method reduces the size of the lookup table, losing less than one LSB of
precision. The spurious free dynamic range (SFDR) is empirically 1-3 dB lower than the
noncompressed case. The hardware savings of the compressed lookup table allow room to improve
performance by increasing the word length of the accumulator and the number of quantize bits. For
details of the compression method, see “Algorithms” on page 2-67.

Waveform — Type of output waveform
'Sine' (default) | 'Cosine' | 'Complex exponential' | 'Sine and cosine'

Type of output waveform. If you select 'Sine' or 'Cosine', the object returns a sin or cos value.
If you select 'Complex exponential', the output value, exp, is of the form cosine + j*sine. If
you select 'Sine and cosine', the object returns two values, sin and cos.

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine', the
object implements a 1/8 sine wave lookup table for each of the sine and cosine parts of the waveform,
and uses control logic to select and invert the values to generate both sine and cosine waveforms.
This optimization means that dual output mode uses similar hardware resources compared to single
output mode.

PhasePort — Return current phase
false or 0 (default) | true or 1

Set this property to 1 (true) to return the current NCO phase in the phase output argument. The
phase is the output of the quantized accumulator with offset and increment applied. If quantization is
disabled, this argument returns the output of the accumulator with offset and increment applied.

ResetAction — Enable reset accumulator input argument
false or 0 (default) | true or 1

When this property is 1 (true), the object accepts a ResetAccum input argument. When the
ResetAccum argument is 1 (true), the object resets the accumulator to its initial value.

Data Types

OverflowAction — Overflow mode for fixed-point operations
'Wrap' (default)

This property is read-only.

Overflow mode for fixed-point operations.

RoundingMethod — Rounding mode for fixed-point operations
'Floor' (default)

This property is read-only.

Rounding mode for fixed-point operations.

AccumulatorDataType — Accumulator data type
'Binary point scaling' (default)

This property is read-only.

Accumulator data type description. The object defines the fixed-point data type using the
AccumulatorSigned, AccumulatorWL, and AccumulatorFL properties.

2 System Objects

2-60

AccumulatorSigned — Signed or unsigned accumulator data format
'Signed' (default)

This property is read-only.

Signed or unsigned accumulator data format. All output is signed format.

AccumulatorWL — Accumulator word length
16 (default) | integer

Accumulator word length, in bits, specified as an integer. This value must include the sign bit.

When the PhaseQuantization property is 0, then AccumulatorWL determines the LUT size. For
HDL code generation, the LUT size must be between 2 and 217 entries. When you set the
LUTCompress property to 1 (true), AccumulatorWL must be an integer in the range [5,21]. When
you set the LUTCompress property to 0 (false), AccumulatorWL must be an integer in the range
[3,19]. For more information on how this parameter affects the LUT size, see the “Lookup Table
Compression” on page 2-68 section.

When you set the PhaseQuantization property to 1, there is no limit to the accumulator word
length property value.

AccumulatorFL — Accumulator fraction length
0 (default)

This property is read-only.

Accumulator fraction length, in bits. The accumulator operates on integers. If the phase increment is
fixed-point type with a fractional part, the object returns an error.

PhaseQuantization — Quantize accumulated phase
false or 0 (default) | true or 1

Whether to quantize accumulated phase, specified as 1 (true) or 0 (false). When this property is
enabled, the object quantizes the result of the phase accumulator to a fixed bit-width. The object uses
this quantized value to select a waveform value from the lookup table. Quantizing the output of the
phase accumulator enables you to reduce the lookup table size without lowering the frequency
resolution. Select the size of the lookup table by using the NumQuantizerAccumulatorBits
property.

When you disable this property, the object uses the full accumulator value as the address of the
lookup table.

NumQuantizerAccumulatorBits — Number of quantizer accumulator bits
12 (default) | integer

Number of quantizer accumulator bits, specified as an integer greater than 4 and less than the
AccumulatorWL property value. For HDL code generation, this parameter value must result in a LUT
size between 2 and 217 entries.

When you set the LUTCompress property to 1 (true), AccumulatorWL must be an integer in the
range [5,21]. When you set the LUTCompress property to 0 (false), AccumulatorWL must be an
integer in the range [3,19]. For more information on how this parameter affects the LUT size, see the
“Lookup Table Compression” on page 2-68 section.

 dsphdl.NCO

2-61

When you set the QuantizePhase property to true, there is no limit to the
NumQuantizerAccumulatorBits property value.
Dependencies

To enable this property, set the PhaseQuantization property to 1 (true).

OutputDataType — Output data type
'Binary point scaling' (default) | 'double' | 'single'

Output data type. If you specify 'Binary point scaling', the object defines the fixed-point data
type using the OutputSigned, OutputWL, and OutputFL properties.

This parameter is ignored if any input is of floating-point type. In that case, the output data type is
double.

OutputSigned — Signed or unsigned output data format
'Signed' (default)

This property is read-only.

Signed or unsigned output data format. All output is signed format.

OutputWL — Output word length
16 (default) | integer

Output word length, in bits, specified as an integer. This value must include the sign bit.

OutputFL — Output fraction length
14 (default) | scalar integer

Output fraction length, in bits, specified as a scalar integer.

Usage

Syntax
[Y,ValidOut] = hdlnco(Inc,ValidIn)
[Y,ValidOut] = hdlnco (ValidIn)
[Y,ValidOut] = hdlnco(Inc,Offset,Dither,ValidIn)
[Y,Phase,ValidOut] = hdlnco(___)
[___] = hdlnco(___ ,ResetAccum,ValidIn)

Description

The object returns the waveform value, Y, as a sine value, a cosine value, a complex exponential
value, or a [Sine,Cosine] pair of values, depending on the Waveform property.

[Y,ValidOut] = hdlnco(Inc,ValidIn) returns a sinusoidal signal, Y, generated by the
HDLNCO System object, using the phase increment, Inc. When ValidIn is true, Inc is added to
the accumulator. The Inc argument is optional. Alternatively, you can specify the phase increment as
a property.

[Y,ValidOut] = hdlnco (ValidIn) returns a waveform, Y, using waveform parameters from
properties rather than input arguments.

2 System Objects

2-62

To use this syntax, set the PhaseIncrementSource, PhaseOffsetSource, and DitherSource properties
to 'Property'. These properties are independent of each other. For example:

hdlnco = dsphdl.NCO('PhaseIncrementSource','Property', ...
 'PhaseIncrement',phIncr,...
 'PhaseOffset',phOffset,...
 'NumDitherBits',4)

[Y,ValidOut] = hdlnco(Inc,Offset,Dither,ValidIn) returns a waveform, Y, with phase
increment, Inc, phase offset, Offset, and dither, Dither.

This syntax applies when you set the PhaseIncrementSource, PhaseOffsetSource, and DitherSource
properties to 'Input port'. These properties are independent of each other. You can mix and
match the activation of these arguments. PhaseIncrementSource is 'Input port' by default. For
example:

hdlnco = dsphdl.NCO('PhaseOffsetSource','Input port',...
 'DitherSource','Input port')
for k = 1:1/Ts
 y(k) = hdlnco(phIncr,phOffset,ditherBits,true);
end

[Y,Phase,ValidOut] = hdlnco(___) returns a waveform, Y, and current phase, Phase. The
phase is the output of the quantized accumulator.

To use this syntax, set the PhasePort property to true. This syntax can include any of the arguments
from other syntaxes.

[___] = hdlnco(___ ,ResetAccum,ValidIn) resets the accumulator value, but does not reset
the output samples in the pipeline. If ValidIn is true, then the object continues to generate the
output waveform starting from the reset accumulator value.

To use this syntax, set the ResetAction property to 1 (true). This syntax can include any of the
arguments from other syntaxes.

Input Arguments

Inc — Phase increment
scalar integer

Phase increment, specified as a scalar integer. The object casts this value to match the accumulator
word length.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

To enable this argument, set the PhaseIncrementSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

ValidIn — Control signal that enables NCO operation
scalar

 dsphdl.NCO

2-63

Control signal that enables NCO operation, specified as a logical scalar. When ValidIn is true,
the object increments the phase and captures any input values. When ValidIn is false, the object
holds the phase accumulator and ignores any input values.

When the SamplesPerFrame property value is greater than 1, this signal enables processing of
SamplesPerFrame samples.
Data Types: logical

Offset — Phase offset
scalar integer

Phase offset, specified as a scalar integer.

double and single data types are supported for simulation but not for HDL code generation.
Dependencies

To enable this argument, set the PhaseOffsetSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

Dither — Dither
scalar integer | column vector of integers

Dither, specified as an integer or as a column vector of integers. The length of the vector must equal
the SamplesPerFrame property value.

double and single data types are supported for simulation, but not for HDL code generation.
Dependencies

To enable this argument, set the DitherSource property to 'Input port'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixdt([],N,0)

ResetAccum — Resets the accumulator
scalar

Control signal that resets the accumulator, specified as a logical scalar . When this signal is true,
the object resets the accumulator to its initial value. This signal does not reset the output samples in
the pipeline.
Dependencies

To enable this argument, set the ResetAction property to 1 (true).
Data Types: logical

Output Arguments

Y — Generated waveform
scalar | [Sine,Cosine] pair | vector

Generated waveform, returned as a scalar or a vector of length SamplesPerFrame. This argument
can be a sin or cos value, an exp value representing cosine + j*sine, or a pair of arguments in
the form [Sine,Cosine].

2 System Objects

2-64

If any input is of floating-point type, the object returns floating-point values for the waveform and
Phase arguments, otherwise the object returns values using the type defined by the
OutputDataType property.

double and single data types are supported for simulation, but not for HDL code generation.

Dependencies

By default, the output waveform is a sine wave. The format of the output waveform depends on the
Waveform property.

ValidOut — Indicates validity of output data
scalar

Control signal that indicates validity of output data, specified as a logical scalar. When validOut
is true, the values of Y and Phase are valid. When validOut is false, the values of Y and Phase
are not valid.

When the SamplesPerFrame property value is greater than 1, this signal indicates the validity of all
elements in the output vectors.
Data Types: logical

Phase — Current phase of NCO
scalar | column vector

Current phase of the NCO, returned as a scalar or as a vector of length SamplesPerFrame. The
phase is the output of the quantized accumulator with offset and increment applied. If quantization is
disabled, this port returns the output of the accumulator with offset and increment applied.

The values are of type fixdt(1,N,0), where N is the NumQuantizerAccumulatorBits property
value. If quantization is disabled, then N is the AccumulatorWL property value.

If any input argument is floating-point type, the object returns the Phase argument as a floating point
value. Floating-point types are supported for simulation but not for HDL code generation.

Dependencies

To enable this argument, set the PhasePort property to 1 (true).
Data Types: single | double | fixdt(1,N,0)

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

 dsphdl.NCO

2-65

Examples

Design a HDL-Compatible NCO Source

This example shows how to design an HDL-compatible NCO source.

Write a function that creates and calls the System object™, based on the waveform requirements. You
can generate HDL from this function.

function yOut = HDLNCO510(validIn)
%HDLNCO510
% Generates one sample of NCO waveform using the dsphdl.NCO System object(TM)
% validIn is a logical scalar value
% phase increment, phase offset, and dither are fixed.
% You can generate HDL code from this function.

 persistent nco510;

 if isempty(nco510)
 % Since calculation of the object parameters results in constant values, this
 % code is not included in the generated HDL. The generated HDL code for
 % the NCO object is initialized with the constant property values.

 F0 = 510; % Target output frequency in Hz
 dphi = pi/2; % Target phase offset
 df = 0.05; % Frequency resolution in Hz
 minSFDR = 96; % Spurious free dynamic range(SFDR) in dB
 Ts = 1/4000; % Sample period in seconds

 % Calculate the number of accumulator bits required for the frequency
 % resolution and the number of quantized accumulator bits to satisfy the SFDR
 % requirement.
 Nacc = ceil(log2(1/(df*Ts)));
 % Actual frequency resolution achieved = 1/(Ts*2^Nacc)
 Nqacc = ceil((minSFDR-12)/6);
 % Calculate the phase increment and offset to achieve the target frequency
 % and offset.
 phIncr = round(F0*Ts*2^Nacc);
 phOffset = 2^Nacc*dphi/(2*pi);
 nco510 = dsphdl.NCO('PhaseIncrementSource','Property', ...
 'PhaseIncrement',phIncr,...
 'PhaseOffset',phOffset,...
 'NumDitherBits',4, ...
 'NumQuantizerAccumulatorBits',Nqacc,...
 'AccumulatorWL',Nacc);
 end

 yOut = nco510(validIn);

end

Call the object to generate data points in a sine wave. The input to the object is a valid control signal.

Ts = 1/4000;
y = zeros(1,1/Ts);

2 System Objects

2-66

for k = 1:1/Ts
 y(k) = HDLNCO510(true);
end

Plot the mean-square spectrum of the 510 Hz sine wave generated by the NCO.

sa = dsp.SpectrumAnalyzer('SampleRate',1/Ts);
sa.SpectrumType = 'Power density';
sa.PlotAsTwoSidedSpectrum = false;
sa(y')

Algorithms
The frequency resolution of the sine wave depends on the size of the accumulator. Given a sample
time, Ts, and the desired output frequency resolution Δf, calculate the necessary accumulator word
length, N.

N = ceil log2
1

Ts ⋅ Δf

For a desired output frequency Fo, calculate the phase increment.

phaseincrement = round(F0Ts2N)

 dsphdl.NCO

2-67

Quantizing the output of the phase accumulator enables you to reduce the lookup table size without
lowering the frequency resolution. Calculate the quantized word length to achieve a desired spurious
free dynamic range (SFDR).

Q = ceil SFDR− 12
6

Phase offset and dither are optionally added at the accumulator stage. For a desired phase offset (in
radians) of the output waveform, calculate the phase offset value that the object adds in the
accumulator.

phaseof f set = 2N ⋅ desiredphaseof f set
2π

The NCO implementation depends on whether you enable the LUTCompress property.

Without lookup table compression, the object uses the same quarter-sine lookup table as the
dsp.NCO object. The size of the LUT is 2Q-2×W bits, where Q is NumQuantizerAccumulatorBits
and W is OutputWL.

The object casts the phase increment value to match the accumulator word length.

If you do not enable PhaseQuantization, then Q=N, where N is AccumulatorWL. Consider the
impact on simulator memory and hardware resources when you select these parameters.

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine', the
object implements a 1/8 sine wave lookup table for each of the sine and cosine parts of the waveform,
and uses control logic to select and invert the values to generate both sine and cosine waveforms.
This optimization means that dual output mode uses similar hardware resources compared to single
output mode.

For an example of how to generate a sine wave using this System object, see “Design a HDL-
Compatible NCO Source” on page 2-66.

Lookup Table Compression

When you select lookup table (LUT) compression, the object applies the Sunderland compression
method. Sunderland techniques use trigonometric identities to divide each phase of the quarter sine
wave into three components and express it as:

sin(A + B + C) = sin(A + B)cos(C) + cos(A)cos(B)sin(C)− sin(A)sin(B)sin(C)

2 System Objects

2-68

If the quarter-sine phase has Q-2 bits, then the phase components A and B have a word length of
LA=LB=ceil((Q-2)/3). Phase component C contains the remaining phase bits. If the phase has 12
bits, then the quarter sine phase has 10 bits, and the components are defined as:

• A, the four most significant bits

(0 ≤ A ≤ π
2)

• B, the next four bits

(0 ≤ B ≤ π
2 × 2−4)

• C, the remaining two least significant bits

(0 ≤ C ≤ π
2 × 2−8)

Given the relative sizes of A, B, and C, the equation can be approximated by:

sin(A + B + C) ≈ sin(A + B) + cosAsinC

The object implements this equation with one LUT for sin(A + B) and one LUT for cos(A)sin(C). The
second term is a fine correction factor that you can truncate to fewer bits without losing precision.
Therefore, the second LUT returns a four-bit result.

With the default accumulator size of 16 bits, and the default quantized phase width of 12 bits, the
LUTs use 28×16 plus 26×4 bits (4.5 kb). For comparison, a quarter-sine lookup table without
compression uses 210×16 bits (16 kb). The compression approximation is accurate within one LSB,
resulting in an SNR of at least 60 dB on the output. See [1].

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine', the
object implements a compressed lookup table for each of the sine and cosine parts of the waveform.
The hardware resource use is still smaller than dual output mode with an uncompressed table.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

 dsphdl.NCO

2-69

Before R2022a, this System object was named dsp.HDLNCO.

Resource optimization for dual output mode

When you set the Waveform property to 'Complex exponential' or 'Sine and cosine', this
System object implements a 1/8 sine wave lookup table for each of the sine and cosine parts of the
waveform, and uses control logic to select and invert the values to generate both sine and cosine
waveforms. This optimization means that dual output mode uses similar hardware resources
compared to single output mode. In previous releases, the object implemented one lookup table for
each output waveform.

HDL-optimized NCO requires valid input argument
Behavior changed in R2020a

In previous releases, the input validIn argument of the dsp.HDLNCO System object was optional. It
is now required. If you are using no other input ports, the object uses the validIn argument as an
enable signal.

HDL-optimized NCO with floating-point inputs applies phase quantization
Behavior changed in R2020a

The output waveform returned from floating-point input values has changed. The output waveform
now matches that returned from the same input values specified in fixed-point types.

Prior to R2020a, when using floating-point input types, the dsp.HDLNCO System object did not
quantize the phase internally. The object expected floating-point phase increment and phase offset
inputs specified in radians. Now, the object quantizes the phase internally, and you must specify the
input phase increment and offset in terms of the quantized size, for both floating-point and fixed-point
input types.

For example, prior to R2020a, for a floating-point HDL NCO to generate output samples with a
desired output frequency of F0 and sample frequency of Fs, you had to specify the phase increment as
2π(F0/Fs) and phase offset as π/2.

Starting in R2020a, you must specify the phase increment and phase offset in terms of the quantized
size, N. These input values are the same as the input values you use with fixed-point types. Specify
the phase increment as (F0*2N)/Fs, and the phase offset as (π/2)*2N/2π, or 2N/4.

References
[1] Cordesses, L., "Direct Digital Synthesis: A Tool for Periodic Wave Generation (Part 1)." IEEE

Signal Processing Magazine. Volume 21, Issue 4, July 2004, pp. 50–54.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

2 System Objects

2-70

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.NCO

Blocks
NCO

Introduced in R2013a

 dsphdl.NCO

2-71

dsphdl.ChannelSynthesizer
Package: dsphdl

Combine narrowband signals into multichannel signal

Description
The dsphdl.ChannelSynthesizer System object combines narrowband signals into a multi-
channel signal using the polyphase filter bank technique. The filter bank uses a prototype lowpass
filter and is implemented using a polyphase structure. You can specify the filter coefficients directly
or through design parameters. The System object provides an architecture suitable for HDL code
generation and hardware deployment.

The System object supports real and complex fixed-point inputs.

To combine multiple narrowband signals into a broadband signal:

1 Create the dsphdl.ChannelSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ChannelSynthesizer = dsphdl.ChannelSynthesizer
ChannelSynthesizer = dsphdl.ChannelSynthesizer(Name,Value)

Description

ChannelSynthesizer = dsphdl.ChannelSynthesizer creates a polyphase FFT synthesis filter
bank System object, which combines multiple narrowband input signals into a broadband output
signal.

ChannelSynthesizer = dsphdl.ChannelSynthesizer(Name,Value) creates a polyphase FFT
synthesis filterbank object with each specified property set to the specified value. You can specify
additional name-value arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

2 System Objects

2-72

Main

FilterCoefficients — Polyphase filter coefficients
[-0.0329 0.1218 0.3183 0.4829 0.5469 0.4829 0.5469 0.4829 0.3183 0.1218
-0.0329] (default) | real- or complex-valued vector

Polyphase filter coefficients, specified as a real- or complex-valued vector. If the number of
coefficients is not a multiple of the number of frequency bands or the IFFT length, the object pads
this vector with zeros. The default filter specification is a raised-cosine FIR filter,
rcosdesign(0.25,2,4,'sqrt'). You can specify a vector of coefficients or a call to a filter design
function that returns the coefficient values. By default, the object casts the coefficients to the same
data type as the input.

FilterStructure — HDL filter architecture
'Direct form transposed' (default) | 'Direct form systolic'

HDL filter architecture, specified as one of these structures:

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture details, see “Fully Parallel Transposed
Architecture”.

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture details, see “Fully Parallel
Systolic Architecture”.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. The performance of the HDL implementation
depends on your synthesis tool and target device.

Normalize — IFFT scaling
true or 1 (default) | false or 0

IFFT output scaling, specified as either:

• true — The IFFT implements an overall 1/N scale factor by scaling the result of each pipeline
stage by 2, , where N is the IFFT length. This adjustment keeps the output of the IFFT in the same
amplitude range as its input.

• false — The IFFT avoids overflow by increasing the word length by one bit at each stage.

Data Types

RoundingMethod — Rounding mode used for internal fixed-point calculations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The object uses this property when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

 dsphdl.ChannelSynthesizer

2-73

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the OutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

The IFFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled), or
by increasing the word length by 1 bit at each stage (Normalize disabled).

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' or a numerictype
object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

OutputDataType — Output data type
'Full precision' (default) | 'Same as input' | numerictype object

Output data type, specified as 'Same word length as input', 'Full precision', or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings
of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

When you set this property to 'Full precision', the System object selects a best-precision binary
point by considering the values of your filter coefficients and the range of your input data type. When
you set this property to 'Same as input', the System object casts the output of the polyphase filter
to the input data type using the rounding and overflow settings you specify.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

2 System Objects

2-74

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax
[dataOut,validOut] = channelsynthesizer(dataIn,validIn)
[dataOut,validOut] = channelsynthesizer(dataIn,validIn,reset)

Description

[dataOut,validOut] = channelsynthesizer(dataIn,validIn) combines the narrowband
row input dataIn vector signals and returns a broadband signal, dataOut, when validIn is 1
(true). The validIn and validOut arguments are logical scalars that indicate the validity of the
input and output signals, respectively.

[dataOut,validOut] = channelsynthesizer(dataIn,validIn,reset) combines the
narrowband row input dataIn vector signals returns a broadband signal, dataOut, when validIn
is 1 (true) and reset is 0 (false). When reset is 1 (true), the object stops the current calculation and
clears all internal state.

To use this syntax, set the ResetInputPort property to true. For example:

synthesizer = dsphdl.ChannelSynthesizer(...,'ResetInputPort',true);
...
[dataOut,validOut] = synthesizer(dataIn,validIn,reset)

Input Arguments

dataIn — Input data
real-valued row vector | complex-valued row vector

Input data, specified as a real-valued or complex-valued row vector.

The vector length must be a power of 2 and in the range [4, 64].

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | fi

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

reset — Clears internal states
logical scalar

 dsphdl.ChannelSynthesizer

2-75

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the object captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.
Data Types: logical

Output Arguments

dataOut — Synthesized output data
complex-valued column vector

Synthesized output data, returned as a complex-valued column vector.

When the input data type is a floating-point type, the output data inherits the data type of the input
data. When the input data type is an integer type or a fixed-point type, the OutputDataType
property controls the data type of output data.

The output size is same as the input size and it is equal to the number of frequency bands or IFFT
length.

The output order is bit natural. The output data type is a result of the bit growth in the IFFT
necessary to avoid overflow and the data type set in the OutputDataType property.
Data Types: single | double | fi

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.ChannelSynthesizer
getLatency Latency of channel synthesizer calculation

Common to All System Objects
step Run System object algorithm

2 System Objects

2-76

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Create Synthesizer for HDL Generation

Create a function that contains a channel synthesizer object and supports HDL code generation.

Create an input sine wave signal with the specified number of frequency bands, frequency vector, and
loop count.

numOfFrequencyBands = 8;
frequency = [-250,-180,-120,50,120,175,230,300];
loopCount = 100;
sinewave = dsp.SineWave('ComplexOutput',true,'Frequency',...
 frequency,'SamplesPerFrame',loopCount);
spectrumAnalyzer = dsp.SpectrumAnalyzer('ShowLegend',true,...
 'SampleRate',sinewave.SampleRate*numOfFrequencyBands);

Call the function that contains the dsphdl.ChannelSynthesizer object. You can generate HDL
code using this function.

function [yOut,validOut] = HDLSynthesizer8(yIn,validIn)
%HDLSynthesizer8
% Combines narrow band signals to broadband signal using the
% |dsphdl.ChannelSynthesizer| System object(TM).

% |yIn| is a fixed-point row vector and |validIn| is a logical scalar value.
% You can generate HDL code from this function.

 persistent synthesizer8;
 coder.extrinsic('tf');
 coder.extrinsic('dsp.Channelizer');

 if isempty(synthesizer8)
 % Use filter coefficients from non-HDL channelizer. You can also
 % provide your own filter coefficients.
 FilterCoefficients = tf(dsp.Channelizer('NumFrequencyBands',...
 8));
 synthesizer8 = dsphdl.ChannelSynthesizer('FilterCoefficients',...
 FilterCoefficients);
 end
 [yOut,validOut] = synthesizer8(yIn,validIn);
end

Synthesize the input data by calling the function.

y = zeros(numOfFrequencyBands,loopCount);
validOut = false(loopCount,1);

for i = 1:20
 x = fi(sinewave(),1,16); % Each column is a sine wave signal

 dsphdl.ChannelSynthesizer

2-77

 for j = 1:loopCount
 [y(:,j),validOut(j)] = HDLSynthesizer8(x(j,:),true);
 end
 yValid = y(:,validOut == true);
 spectrumAnalyzer(yValid(:));
end

Explore Latency of Channel Synthesizer Object

The latency of the dsphdl.ChannelSynthesizer object varies with the IFFT length and filter
structure.

Create a dsphdl.ChannelSynthesizer object with a direct form transposed filter structure and 16
frequency bands, and then calculate the latency.

synthesizerDT = dsphdl.ChannelSynthesizer('FilterStructure','Direct form transposed');
latencyDT = getLatency(synthesizerDT,16)

latencyDT = 20

Calculate the latency information for dsphdl.ChannelSynthesizer object with a direct form
systolic filter structure and and 8 frequency bands.

2 System Objects

2-78

synthesizerDS = dsphdl.ChannelSynthesizer('FilterStructure','Direct form systolic');
latencyDS = getLatency(synthesizerDS,8)

latencyDS = 21

Enable scaling at each stage of the IFFT. The latency does not change.

synthesizerDT.Normalize = true;
latencyDTn = getLatency(synthesizerDT,16)

latencyDTn = 20

Algorithms
The polyphase filter algorithm requires a subfilter for each FFT channel. For more information on the
polyphase filter architecture, see the Channelizer (DSP System Toolbox) block reference page.

If the FFT length is N, the object implements N subfilters in the hardware. Each subfilter is an FIR
filter direct form transposed or direct form systolic with NumCoeffs/N taps. The object casts the output
of the subfilters to the specified OutputDataType property by using the rounding and overflow
settings you select and then pipelines filter tap in the subfilter to target the DSP sections of an FPGA.

Latency

The latency varies with the input size and the filter structure. Use the getLatency function to find
the latency of a particular configuration. Latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is continuous. The filter coefficients and complex
multiplication do not affect the latency.

This figure shows the output of the object for a vector input length 8 when you set the Filter
structure property to 'Direct form transposed' and with other properties set to default
values. The latency of the object is 19 clock cycles.

 dsphdl.ChannelSynthesizer

2-79

This figure shows the output of the object for a vector input of length 8 when you set the Filter
structure property to 'Direct form systolic' and with other properties set with default
values. The latency of the object is 31 clock cycles.

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to the Xilinx Zynq- 7000 ZC706 evaluation board. The two examples in the tables use this
common configuration:

• 1-by-8 vector
• 16-bit complex input data
• Filter structure — Direct form transposed
• Filter length — 96 coefficients
• Coefficient data type — Same word length as input
• Output data type — Same as input
• Complex multiplication (default) — Use 4 multipliers and 2 adders
• Output scaling — Enabled

The performance of the synthesized HDL code varies with your target and synthesis options.

When you set the Filter structure property to 'Direct form transposed', the design
achieves a clock frequency of 382 MHz. The design uses these resources.

Resource Number Used
LUT 1953
FFS 3833
Xilinx LogiCORE DSP48 208

When you set the Filter structure property to 'Direct form systolic', the design achieves
a clock frequency of 381 MHz. The design uses these resources.

2 System Objects

2-80

Resource Number Used
LUT 2026
FFS 3519
Xilinx LogiCORE DSP48 208

References
[1] Harris, Fredric J. Multirate Signal Processing for Communication Systems. Upper Saddle River,

N.J: Prentice Hall PTR, 2004.

[2] Harris, Frederic J., Chris Dick, and Michael Rice. "Digital Receivers and Transmitters Using
Polyphase Filter Banks for Wireless Communications." IEEE Transactions on Microwave
Theory and Techniques. 51, no 4, (April 2003): 1395–1412. https://doi.org/10.1109/
TMTT.2003.809176.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Blocks
Channel Synthesizer | Channelizer

Objects
dsphdl.Channelizer

Introduced in R2021b

 dsphdl.ChannelSynthesizer

2-81

dsphdl.FFT
Package: dsphdl

Compute fast Fourier transform (FFT)

Description
The dsphdl.FFT System object provides two architectures to optimize either throughput or area.
Use the streaming Radix 2^2 architecture for high-throughput applications. This architecture
supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS) throughput
using vector input. Use the burst Radix 2 architecture for a minimum resource implementation,
especially with large FFT sizes. Your system must be able to tolerate bursty data and higher latency.
This architecture supports only scalar input data. The object accepts real or complex data, provides
hardware-friendly control signals, and has optional output frame control signals.

To calculate the fast Fourier transform:

1 Create the dsphdl.FFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
FFT_N = dsphdl.FFT
FFT_N = dsphdl.FFT(Name,Value)

Description

FFT_N = dsphdl.FFT returns an HDL FFT System object, FFT_N, that performs a fast Fourier
transform.

FFT_N = dsphdl.FFT(Name,Value) sets properties using one or more name-value pairs. Enclose
each property name in single quotes.
Example: fft128 = dsphdl.FFT('FFTLength',128)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

2 System Objects

2-82

Architecture — Hardware implementation
'Streaming Radix 2^2' (default) | 'Burst Radix 2'

Hardware implementation, specified as either:

• 'Streaming Radix 2^2' — Low-latency architecture. Supports gigasamples-per-second (GSPS)
throughput when you use vector input.

• 'Burst Radix 2'— Minimum resource architecture. Vector input is not supported when you
select this architecture. When you use this architecture, your input data must comply with the
ready backpressure signal.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

BitReversedOutput — Order of the output data
true (default) | false

Order of the output data, specified as either:

• true — The output channel elements are bit reversed relative to the input order.
• false — The output channel elements are in linear order.

The FFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

BitReversedInput — Expected order of the input data
false (default) | true

Expected order of the input data, specified as either:

• true — The input channel elements are in bit-reversed order.
• false — The input channel elements are in linear order.

The FFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Normalize — Output scaling
false (default) | true

Output scaling, specified as either:

• true — The object implements an overall 1/N scale factor by dividing the output of each butterfly
multiplication by 2. This adjustment keeps the output of the FFT in the same amplitude range as
its input.

• false — The object avoids overflow by increasing the word length by one bit after each butterfly
multiplication. The bit growth is the same for both architectures.

 dsphdl.FFT

2-83

FFTLength — Number of data points used for one FFT calculation
1024 (default) | integer power of 2 between 22 and 216

Number of data points used for one FFT calculation, specified as an integer power of 2 between 22

and 216. The object accepts FFT lengths outside this range, but they are not supported for HDL code
generation.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true), the
object captures data for processing.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is true on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is true on the first cycle of each valid output frame.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the FFT algorithm uses fixed-point arithmetic for internal calculations. This option does not
apply when the input is single or double type. Rounding applies to twiddle factor multiplication and
scaling operations.

Usage

Syntax
[Y,validOut] = FFT_N(X,validIn)
[Y,validOut,ready] = FFT_N(X,validIn)
[Y,startOut,endOut,validOut] = FFT_N(X,validIn)
[Y,validOut] = FFT_N(X,validIn,resetIn)
[Y,startOut,endOut,validOut] = FFT_N(X,validIn,resetIn)

Description

[Y,validOut] = FFT_N(X,validIn) returns the FFT, Y, of the input, X, when validIn is true.
validIn and validOut are logical scalars that indicate the validity of the input and output signals,
respectively.

[Y,validOut,ready] = FFT_N(X,validIn) returns the fast Fourier transform (FFT) when using
the burst Radix 2 architecture. The ready signal indicates when the object has memory available for
new input samples. You must apply input data and valid signals only when ready is 1 (true). The
object ignores any input data and valid signals when ready is 0 (false).

2 System Objects

2-84

To use this syntax, set the Architecture property to 'Burst Radix 2'. For example:

FFT_N = dsphdl.FFT(___,'Architecture','Burst Radix 2');
...
[y,validOut,ready] = FFT_N(x,validIn)

[Y,startOut,endOut,validOut] = FFT_N(X,validIn) also returns frame control signals
startOut and endOut. startOut is true on the first sample of a frame of output data. endOut is
true for the last sample of a frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:

FFT_N = dsphdl.FFT(___,'StartOutputPort',true,'EndOutputPort',true);
...
[y,startOut,endOut,validOut] = FFT_N(x,validIn)

[Y,validOut] = FFT_N(X,validIn,resetIn) returns the FFT when validIn is true and
resetIn is false. When resetIn is true, the object stops the current calculation and clears all
internal state.

To use this syntax set the ResetInputPort property to true. For example:

FFT_N = dsphdl.FFT(___,'ResetInputPort',true);
...
[y,validOut] = FFT_N(x,validIn,resetIn)

[Y,startOut,endOut,validOut] = FFT_N(X,validIn,resetIn) returns the FFT, Y, using all
optional control signals. You can use any combination of the optional port syntaxes.

Input Arguments

X — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values, in fixed-point or integer
format. Vector input is supported with 'Streaming Radix 2^2' architecture only. The vector size
must be a power of 2 between 1 and 64, and not greater than the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

resetIn — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

 dsphdl.FFT

2-85

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.
Data Types: logical

Output Arguments

Y — Output data
scalar or column vector of real or complex values

Output data, returned as a scalar or column vector of real or complex values. The output format
matches the format of the input data.

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step. This output is returned
when you select 'Burst Radix 2' architecture.
Data Types: logical

startOut — First sample of output frame
logical scalar

First sample of output frame, returned as a logical scalar. To enable this argument, set the
StartOutputPort property to true.
Data Types: logical

endOut — Last sample of output frame
logical scalar

Last sample of output frame, returned as a logical scalar. To enable this argument, set the
EndOutputPort property to true.
Data Types: logical

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

2 System Objects

2-86

release(obj)

Specific to dsphdl.FFT
getLatency Latency of FFT calculation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create FFT for HDL Generation

Create the specifications and input signal.

N = 128;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,24);

Write a function that creates and calls the System object™. You can generate HDL from this function.

function [yOut,validOut] = HDLFFT128(yIn,validIn)
%HDLFFT128
% Processes one sample of FFT data using the dsphdl.FFT System object(TM)
% yIn is a fixed-point scalar or column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent fft128;
 if isempty(fft128)
 fft128 = dsphdl.FFT('FFTLength',128);
 end
 [yOut,validOut] = fft128(yIn,validIn);
end

Compute the FFT by calling the function for each data sample.

Yf = zeros(1,3*N);
validOut = false(1,3*N);
for loop = 1:1:3*N
 if (mod(loop, N) == 0)
 i = N;
 else
 i = mod(loop, N);
 end
 [Yf(loop),validOut(loop)] = HDLFFT128(complex(y_fixed(i)),(loop <= N));
end

 dsphdl.FFT

2-87

Discard invalid data samples. Then plot the frequency channel results from the FFT.

Yf = Yf(validOut == 1);
Yr = bitrevorder(Yf);
plot(Fs/2*linspace(0,1,N/2), 2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT (f)')

Create Vector-Input FFT for HDL Generation

Create specifications and input signal. This example uses a 128-point FFT and computes the
transform over 16 samples at a time.

N = 128;
V = 16;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,24);
y_vect = reshape(y_fixed,V,N/V);

Write a function that creates and calls the System object™. The function does not need to know the
vector size. The object saves the size of the input signal the first time you call it.

2 System Objects

2-88

function [yOut,validOut] = HDLFFT128V16(yIn,validIn)
%HDLFFT128V16
% Processes 16-sample vectors of FFT data
% yIn is a fixed-point column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent fft128v16;
 if isempty(fft128v16)
 fft128v16 = dsphdl.FFT('FFTLength',128);
 end
 [yOut,validOut] = fft128v16(yIn,validIn);
end

Compute the FFT by passing 16-element vectors to the object. Use the getLatency function to find
out when the first output data sample will be ready. Then, add the frame length to determine how
many times to call the object. Because the object variable is inside the function, use a second object
to call getLatency. Use the loop counter to flip validIn to false after N input samples.

tempfft = dsphdl.FFT;
loopCount = getLatency(tempfft,N,V)+N/V;
Yf = zeros(V,loopCount);
validOut = false(V,loopCount);
for loop = 1:1:loopCount
 if (mod(loop,N/V) == 0)
 i = N/V;
 else
 i = mod(loop,N/V);
 end
 [Yf(:,loop),validOut(loop)] = HDLFFT128V16(complex(y_vect(:,i)),(loop<=N/V));
end

Discard invalid output samples.

C = Yf(:,validOut==1);
Yf_flat = C(:);

Plot the frequency channel data from the FFT. The FFT output is in bit-reversed order. Reorder it
before plotting.

Yr = bitrevorder(Yf_flat);
plot(Fs/2*linspace(0,1,N/2),2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT (f)')

 dsphdl.FFT

2-89

Explore Latency of HDL FFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsphdl.FFT object and request the latency.

hdlfft = dsphdl.FFT('FFTLength',512);
L512 = getLatency(hdlfft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change.

L256 = getLatency(hdlfft,256)

L256 = 329

N = hdlfft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getLatency(hdlfft,256,8)

2 System Objects

2-90

L256v8 = 93

Enable scaling at each stage of the FFT. The latency does not change.

hdlfft.Normalize = true;
L512n = getLatency(hdlfft)

L512n = 599

Request the same output order as the input order. The latency increases because the object must
collect the output before reordering.

hdlfft.BitReversedOutput = false;
L512r = getLatency(hdlfft)

L512r = 1078

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

 dsphdl.FFT

2-91

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

2 System Objects

2-92

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

 dsphdl.FFT

2-93

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

2 System Objects

2-94

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

 dsphdl.FFT

2-95

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLFFT and was part of the DSP System Toolbox
product.

FFT length of 4
Behavior changed in R2022a

This System object now supports an FFT length of 4. In previous releases the FFT length had to be a
power of 2 from 23 to 216.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsp.HDLChannelizer | dsp.HDLIFFT | dsp.FFT

Blocks
FFT | IFFT

2 System Objects

2-96

Introduced in R2014b

 dsphdl.FFT

2-97

dsphdl.IFFT
Package: dsphdl

Compute inverse fast Fourier transform (IFFT)

Description
The dsphdl.IFFT System object provides two architectures to optimize either throughput or area.
Use the streaming Radix 2^2 architecture for high-throughput applications. This architecture
supports scalar or vector input data. You can achieve gigasamples-per-second (GSPS) throughput
using vector input. Use the burst Radix 2 architecture for a minimum resource implementation,
especially with large FFT sizes. Your system must be able to tolerate bursty data and higher latency.
This architecture supports only scalar input data. The object accepts real or complex data, provides
hardware-friendly control signals, and has optional output frame control signals.

To calculate the inverse fast Fourier transform:

1 Create the dsphdl.IFFT object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
IFFT_N = dsphdl.IFFT
IFFT_N = dsphdl.IFFT(Name,Value)

Description

IFFT_N = dsphdl.IFFT returns an HDL IFFT System object, IFFT_N, that performs a fast Fourier
transform.

IFFT_N = dsphdl.IFFT(Name,Value) sets properties using one or more name-value pairs.
Enclose each property name in single quotes.
Example: ifft128 = dsphdl.IFFT('FFTLength',128)

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

2 System Objects

2-98

Architecture — Hardware implementation
'Streaming Radix 2^2' (default) | 'Burst Radix 2'

Hardware implementation, specified as either:

• 'Streaming Radix 2^2' — Low-latency architecture. Supports gigasamples-per-second (GSPS)
throughput when you use vector input.

• 'Burst Radix 2'— Minimum resource architecture. Vector input is not supported when you
select this architecture. When you use this architecture, your input data must comply with the
ready backpressure signal.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

BitReversedOutput — Order of the output data
true (default) | false

Order of the output data, specified as either:

• true — The output channel elements are bit reversed relative to the input order.
• false — The output channel elements are in linear order.

The IFFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

BitReversedInput — Expected order of the input data
false (default) | true

Expected order of the input data, specified as either:

• true — The input channel elements are in bit-reversed order.
• false — The input channel elements are in linear order.

The IFFT algorithm calculates output in the reverse order to the input. When you request output in
the same order as the input, the algorithm performs an extra reversal operation. For more
information on ordering of the output, see “Linear and Bit-Reversed Output Order”.

Normalize — Output scaling
true (default) | false

Output scaling, specified as either:

• true — The object implements an overall 1/N scale factor by dividing the output of each butterfly
multiplication by 2. This adjustment keeps the output of the IFFT in the same amplitude range as
its input.

• false — The object avoids overflow by increasing the word length by one bit after each butterfly
multiplication. The bit growth is the same for both architectures.

 dsphdl.IFFT

2-99

FFTLength — Number of data points used for one FFT calculation
1024 (default) | integer power of 2 between 22 and 216

Number of data points used for one FFT calculation, specified as an integer power of 2 between 22

and 216. The object accepts FFT lengths outside this range, but they are not supported for HDL code
generation.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true), the
object captures data for processing.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is true on the first cycle of each valid output frame.

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is true on the first cycle of each valid output frame.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. When the input is any integer or fixed-point data
type, the IFFT algorithm uses fixed-point arithmetic for internal calculations. This option does not
apply when the input is single or double type. Rounding applies to twiddle factor multiplication and
scaling operations.

Usage

Syntax
[Y,validOut] = IFFT_N(X,validIn)
[Y,validOut,ready] = IFFT_N(X,validIn)
[Y,startOut,endOut,validOut] = IFFT_N(X,validIn)
[Y,validOut] = IFFT_N(X,validIn,resetIn)
[Y,startOut,endOut,validOut] = IFFT_N(X,validIn,resetIn)

Description

[Y,validOut] = IFFT_N(X,validIn) returns the inverse fast Fourier transform (IFFT), Y, of the
input, X, when validIn is true. validIn and validOut are logical scalars that indicate the validity
of the input and output signals, respectively.

[Y,validOut,ready] = IFFT_N(X,validIn) returns the inverse fast Fourier transform (IFFT)
when using the burst Radix 2 architecture. The ready signal indicates when the object has memory
available to accept new input samples. You must apply input data and valid signals only when
ready is 1 (true). The object ignores the input data and valid signals when ready is 0 (false).

2 System Objects

2-100

To use this syntax, set the Architecture property to 'Burst Radix 2'. For example:

IFFT_N = dsphdl.IFFT(___,'Architecture','Burst Radix 2');
...
[y,validOut,ready] = IFFT_N(x,validIn)

[Y,startOut,endOut,validOut] = IFFT_N(X,validIn) also returns frame control signals
startOut and endOut. startOut is true on the first sample of a frame of output data. endOut is
true for the last sample of a frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:

IFFT_N = dsphdl.IFFT(___,'StartOutputPort',true,'EndOutputPort',true);
...
[y,startOut,endOut,validOut] = IFFT_N(x,validIn)

[Y,validOut] = IFFT_N(X,validIn,resetIn) returns the IFFT, Y, when validIn is true and
resetIn is false. When resetIn is true, the object stops the current calculation and clears all
internal state.

To use this syntax, set the ResetInputPort property to true. For example:

IFFT_N = dsphdl.IFFT(___,'ResetInputPort',true);
...
[y,validOut] = IFFT_N(x,validIn,resetIn)

[Y,startOut,endOut,validOut] = IFFT_N(X,validIn,resetIn) returns the IFFT, Y, using
all optional control signals. You can use any combination of the optional port syntaxes.

Input Arguments

X — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values, in fixed-point or integer
format. Vector input is supported with 'Streaming Radix 2^2' architecture only. The vector size
must be a power of 2 between 1 and 64 that is not greater than the FFT length.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

resetIn — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

 dsphdl.IFFT

2-101

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.
Data Types: logical

Output Arguments

Y — Output data
scalar or column vector of real or complex values

Output data, returned as a scalar or column vector of real or complex values. The output format
matches the format of the input data.

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step. This output is returned
when you select 'Burst Radix 2' architecture.
Data Types: logical

startOut — First sample of output frame
logical scalar

First sample of output frame, returned as a logical scalar. To enable this argument, set the
StartOutputPort property to true.
Data Types: logical

endOut — Last sample of output frame
logical scalar

Last sample of output frame, returned as a logical scalar. To enable this argument, set the
EndOutputPort property to true.
Data Types: logical

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

2 System Objects

2-102

release(obj)

Specific to dsphdl.IFFT
getLatency Latency of FFT calculation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create IFFT for HDL Code Generation

Create the specifications and input signal. This example uses a 128-point FFT.

N = 128;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,16);
noOp = zeros(1,'like',y_fixed);

Compute the FFT of the signal to use as the input to the IFFT object.

hdlfft = dsphdl.FFT('FFTLength',N,'BitReversedOutput',false);
Yf = zeros(1,4*N);
validOut = false(1,4*N);
for loop = 1:1:N
 [Yf(loop),validOut(loop)] = hdlfft(complex(y_fixed(loop)),true);
end
for loop = N+1:1:4*N
 [Yf(loop),validOut(loop)] = hdlfft(complex(noOp),false);
end
Yf = Yf(validOut == 1);

Plot the single-sided amplitude spectrum.

plot(Fs/2*linspace(0,1,N/2),2*abs(Yf(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT (f)')

 dsphdl.IFFT

2-103

Select frequencies that hold the majority of the energy in the signal. The cumsum function does not
accept fixed-point arguments, so convert the data back to double.

[Ysort,i] = sort(abs(double(transpose(Yf(1:N)))),1,'descend');
Ysort_d = double(Ysort);
CumEnergy = sqrt(cumsum(Ysort_d.^2))/norm(Ysort_d);
j = find(CumEnergy > 0.9, 1);
 disp(['Number of FFT coefficients that represent 90% of the ', ...
 'total energy in the sequence: ', num2str(j)])
Yin = zeros(N,1);
Yin(i(1:j)) = Yf(i(1:j));

Number of FFT coefficients that represent 90% of the total energy in the sequence: 4

Write a function that creates and calls the IFFT System object™. You can generate HDL from this
function.

function [yOut,validOut] = HDLIFFT128(yIn,validIn)
%HDLIFFT128
% Processes one sample of data using the dsphdl.IFFT System object(TM)
% yIn is a fixed-point scalar or column vector.
% validIn is a logical scalar.
% You can generate HDL code from this function.

 persistent ifft128;
 if isempty(ifft128)
 ifft128 = dsphdl.IFFT('FFTLength',128);

2 System Objects

2-104

 end
 [yOut,validOut] = ifft128(yIn,validIn);
end

Compute the IFFT by calling the function for each data sample.

Xt = zeros(1,3*N);
validOut = false(1,3*N);
for loop = 1:1:N
 [Xt(loop),validOut(loop)] = HDLIFFT128(complex(Yin(loop)),true);
end
for loop = N+1:1:3*N
 [Xt(loop),validOut(loop)] = HDLIFFT128(complex(0),false);
end

Discard invalid output samples. Then inspect the output and compare it with the input signal. The
original input is in green.

Xt = Xt(validOut==1);
Xt = bitrevorder(Xt);
norm(x-transpose(Xt(1:N)))
figure
stem(real(Xt))
figure
stem(real(x),'--g')

ans =

 0.7863

 dsphdl.IFFT

2-105

2 System Objects

2-106

Create a Vector-Input IFFT for HDL Code Generation

Create the specifications and input signal. This example uses a 128-point FFT and computes the
transform over 16 samples at a time.

N = 128;
V = 16;
Fs = 40;
t = (0:N-1)'/Fs;
x = sin(2*pi*15*t) + 0.75*cos(2*pi*10*t);
y = x + .25*randn(size(x));
y_fixed = sfi(y,32,24);
y_vect = reshape(y_fixed,V,N/V);

Compute the FFT of the signal, to use as the input to the IFFT object.

hdlfft = dsphdl.FFT('FFTLength',N);
loopCount = getLatency(hdlfft,N,V)+N/V;
Yf = zeros(V,loopCount);
validOut = false(V,loopCount);
for loop = 1:1:loopCount
 if (mod(loop,N/V) == 0)
 i = N/V;
 else
 i = mod(loop,N/V);
 end

 dsphdl.IFFT

2-107

 [Yf(:,loop),validOut(loop)] = hdlfft(complex(y_vect(:,i)),(loop<=N/V));
end

Plot the single-sided amplitude spectrum.

C = Yf(:,validOut==1);
Yf_flat = C(:);
Yr = bitrevorder(Yf_flat);
plot(Fs/2*linspace(0,1,N/2),2*abs(Yr(1:N/2)/N))
title('Single-Sided Amplitude Spectrum of Noisy Signal y(t)')
xlabel('Frequency (Hz)')
ylabel('Output of FFT(f)')

Select frequencies that hold the majority of the energy in the signal. The cumsum function doesn't
accept fixed-point arguments, so convert the data back to double.

[Ysort,i] = sort(abs(double(Yr(1:N))),1,'descend');
CumEnergy = sqrt(cumsum(Ysort.^2))/norm(Ysort);
j = find(CumEnergy > 0.9, 1);
 disp(['Number of FFT coefficients that represent 90% of the ', ...
 'total energy in the sequence: ', num2str(j)])
Yin = zeros(N,1);
Yin(i(1:j)) = Yr(i(1:j));
YinVect = reshape(Yin,V,N/V);

Number of FFT coefficients that represent 90% of the total energy in the sequence: 4

2 System Objects

2-108

Write a function that creates and calls the IFFT System object™. You can generate HDL from this
function.

function [yOut,validOut] = HDLIFFT128V16(yIn,validIn)
%HDLFFT128V16
% Processes 16-sample vectors of FFT data
% yIn is a fixed-point column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent ifft128v16;
 if isempty(ifft128v16)
 ifft128v16 = dsphdl.IFFT('FFTLength',128)
 end
 [yOut,validOut] = ifft128v16(yIn,validIn);
end

Compute the IFFT by calling the function for each data sample.

Xt = zeros(V,loopCount);
validOut = false(V,loopCount);
for loop = 1:1:loopCount
 if (mod(loop,N/V) == 0)
 i = N/V;
 else
 i = mod(loop,N/V);
 end
 [Xt(:,loop),validOut(loop)] = HDLIFFT128V16(complex(YinVect(:,i)),(loop<=N/V));
end

ifft128v16 =

 dsphdl.IFFT with properties:

 FFTLength: 128
 Architecture: 'Streaming Radix 2^2'
 ComplexMultiplication: 'Use 4 multipliers and 2 adders'
 BitReversedOutput: true
 BitReversedInput: false
 Normalize: true

 Use get to show all properties

Discard invalid output samples. Then inspect the output and compare it with the input signal. The
original input is in green.

C = Xt(:,validOut==1);
Xt = C(:);
Xt = bitrevorder(Xt);
norm(x-Xt(1:N))
figure
stem(real(Xt))
figure
stem(real(x),'--g')

 dsphdl.IFFT

2-109

ans =

 0.7863

2 System Objects

2-110

Explore Latency of HDL IFFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsphdl.IFFT object and request the latency.

hdlifft = dsphdl.IFFT('FFTLength',512);
L512 = getLatency(hdlifft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change. When you do not specify a vector length, the function
assumes scalar input data.

L256 = getLatency(hdlifft,256)

L256 = 329

N = hdlifft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

 dsphdl.IFFT

2-111

L256v8 = getLatency(hdlifft,256,8)

L256v8 = 93

Enable scaling at each stage of the IFFT. The latency does not change.

hdlifft.Normalize = true;
L512n = getLatency(hdlifft)

L512n = 599

Request the same output order as the input order. This setting increases the latency because the
object must collect the output before reordering.

hdlifft.BitReversedOutput = false;
L512r = getLatency(hdlifft)

L512r = 1078

Algorithms
Streaming Radix 2^2

The streaming Radix 2^2 architecture implements a low-latency architecture. It saves resources
compared to a streaming Radix 2 implementation by factoring and grouping the FFT equation. The
architecture has log4(N) stages. Each stage contains two single-path delay feedback (SDF) butterflies
with memory controllers. When you use vector input, each stage operates on fewer input samples, so
some stages reduce to a simple butterfly, without SDF.

2 System Objects

2-112

The first SDF stage is a regular butterfly. The second stage multiplies the outputs of the first stage by
–j. To avoid a hardware multiplier, the block swaps the real and imaginary parts of the inputs, and
again swaps the imaginary parts of the resulting outputs. Each stage rounds the result of the twiddle
factor multiplication to the input word length. The twiddle factors have two integer bits, and the rest
of the bits are used for fractional bits. The twiddle factors have the same bit width as the input data,
WL. The twiddle factors have two integer bits, and WL-2 fractional bits.

If you enable scaling, the algorithm divides the result of each butterfly stage by 2. Scaling at each
stage avoids overflow, keeps the word length the same as the input, and results in an overall scale
factor of 1/N. If scaling is disabled, the algorithm avoids overflow by increasing the word length by 1
bit at each stage. The diagram shows the butterflies and internal word lengths of each stage, not
including the memory.

 dsphdl.IFFT

2-113

Burst Radix 2

The burst Radix 2 architecture implements the FFT by using a single complex butterfly multiplier.
The algorithm cannot start until it has stored the entire input frame, and it cannot accept the next
frame until computations are complete. The output ready port indicates when the algorithm is ready
for new data. The diagram shows the burst architecture, with pipeline registers.

When you use this architecture, your input data must comply with the ready backpressure signal.

Control Signals

The algorithm processes input data only when the input valid port is 1. Output data is valid only
when the output valid port is 1.

When the optional input reset port is 1, the algorithm stops the current calculation and clears all
internal states. The algorithm begins new calculations when reset port is 0 and the input valid port
starts a new frame.

2 System Objects

2-114

Timing Diagram

This diagram shows the input and output valid port values for contiguous scalar input data,
streaming Radix 2^2 architecture, an FFT length of 1024, and a vector size of 16.

The diagram also shows the optional start and end port values that indicate frame boundaries. If you
enable the start port, the start port value pulses for one cycle with the first valid output of the frame.
If you enable the end port, the start port value pulses for one cycle with the last valid output of the
frame.

If you apply continuous input frames, the output will also be continuous after the initial latency.

The input valid port can be noncontiguous. Data accompanied by an input valid port is processed as
it arrives, and the resulting data is stored until a frame is filled. Then the algorithm returns
contiguous output samples in a frame of N (FFT length) cycles. This diagram shows noncontiguous
input and contiguous output for an FFT length of 512 and a vector size of 16.

When you use the burst architecture, you cannot provide the next frame of input data until memory
space is available. The ready signal indicates when the algorithm can accept new input data. You
must apply input data and valid signals only when ready is 1 (true). The algorithm ignores any input
data and valid signals when ready is 0 (false).

Latency

The latency varies with the FFT length and the vector size. Use the getLatency function to find the
latency of a particular configuration. The latency is the number of cycles between the first valid input
and the first valid output, assuming that the input is contiguous.

When using the burst architecture with a contiguous input, if your design waits for ready to output 0
before de-asserting the input valid, then one extra cycle of data arrives at the input. This data sample

 dsphdl.IFFT

2-115

is the first sample of the next frame. The algorithm can save one sample while processing the current
frame. Due to this one sample advance, the observed latency of the later frames (from input valid to
output valid) is one cycle shorter than the reported latency. The latency is measured from the first
cycle, when input valid is 1 to the first cycle when output valid is 1. The number of cycles between
when ready port is 0 and the output valid port is 1 is always latency – FFTLength.

Performance

This resource and performance data is the synthesis result from the generated HDL targeted to a
Xilinx Virtex-6 (XC6VLX75T-1FF484) FPGA. The examples in the tables have this configuration:

• 1024 FFT length (default)
• Complex multiplication using 4 multipliers, 2 adders
• Output scaling enabled
• Natural order input, Bit-reversed output
• 16-bit complex input data
• Clock enables minimized (HDL Coder parameter)

Performance of the synthesized HDL code varies with your target and synthesis options. For instance,
reordering for a natural-order output uses more RAM than the default bit-reversed output, and real
input uses less RAM than complex input.

For a scalar input Radix 2^2 configuration, the design achieves 326 MHz clock frequency. The
latency is 1116 cycles. The design uses these resources.

Resource Number Used
LUT 4597
FFS 5353
Xilinx LogiCORE DSP48 12
Block RAM (16K) 6

When you vectorize the same Radix 2^2 implementation to process two 16-bit input samples in
parallel, the design achieves 316 MHz clock frequency. The latency is 600 cycles. The design uses
these resources.

Resource Number Used
LUT 7653
FFS 9322
Xilinx LogiCORE DSP48 24

2 System Objects

2-116

Resource Number Used
Block RAM (16K) 8

The block supports scalar input data only when implementing burst Radix 2 architecture. The burst
design achieves 309 MHz clock frequency. The latency is 5811 cycles. The design uses these
resources.

Resource Number Used
LUT 971
FFS 1254
Xilinx LogiCORE DSP48 3
Block RAM (16K) 6

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLIFFT and was part of the DSP System
Toolbox product.

FFT length of 4
Behavior changed in R2022a

This System object now supports an FFT length of 4. In previous releases the FFT length had to be a
power of 2 from 23 to 216.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsphdl.FFT | dsp.IFFT

Blocks
IFFT | FFT

 dsphdl.IFFT

2-117

Introduced in R2014b

2 System Objects

2-118

dsphdl.Channelizer
Package: dsphdl

Polyphase filter bank and fast Fourier transform

Description
The dsphdl.Channelizer System object separates a broadband input signal into multiple
narrowband output signals. It provides hardware speed and area optimization for streaming data
applications. The object accepts scalar or vector input of real or complex data, provides hardware-
friendly control signals, and has optional output frame control signals. You can achieve gigasamples-
per-second (GSPS) throughput by using vector input. The object implements a polyphase filter, with
one subfilter per input vector element. The hardware implementation interleaves the subfilters, which
results in sharing each filter multiplier (FFT Length / Input Size) times. The object implements the
same pipelined Radix 2^2 FFT algorithm as the dsphdl.FFT System object.

To channelize input data:

1 Create the dsphdl.Channelizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
channelizer = dsphdl.Channelizer
channelizer = dsphdl.Channelizer(Name,Value)

Description

channelizer = dsphdl.Channelizer returns a System object, channelizer, that implements a
raised-cosine filter and an 8-point FFT.

channelizer = dsphdl.Channelizer(Name,Value) sets properties using one or more name-
value pairs. Enclose each property name in single quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 dsphdl.Channelizer

2-119

NumFrequencyBands — FFT length
8 (default) | integer power of two

FFT length, specified as an integer power of two. For HDL code generation, the FFT length must be
between 22 and 216, inclusive.

FilterCoefficients — Polyphase filter coefficients
[-0.032 0.121 0.318 0.482 0.546 0.482 0.318 0.121 -0.032] (default) | vector of real or
complex numeric values

Polyphase filter coefficients, specified as a vector of numeric values. If the number of coefficients is
not a multiple of NumFrequencyBands, the object pads this vector with zeros. The default filter
specification is a raised-cosine FIR filter, rcosdesign(0.25,2,4,'sqrt'). You can specify a vector
of coefficients or a call to a filter design function that returns the coefficient values. By default, the
object casts the coefficients to the same data type as the input.

FilterStructure — Filter design properties or coefficients
'Direct form transposed' (default) | 'Direct form systolic'

Specify the HDL filter architecture as one of these structures:

• Direct form transposed — This architecture is a fully parallel implementation that is suitable
for FPGA and ASIC applications. For architecture and performance details, see “Fully Parallel
Transposed Architecture”.

• Direct form systolic — This architecture provides a fully parallel filter implementation that
makes efficient use of Intel and Xilinx DSP blocks. For architecture and performance details, see
“Fully Parallel Systolic Architecture”.

All implementations share multipliers for symmetric and antisymmetric coefficients and remove
multipliers for zero-valued coefficients.

ComplexMultiplication — HDL implementation of complex multipliers
'Use 4 multipliers and 2 adders' (default) | 'Use 3 multipliers and 5 adders'

HDL implementation of complex multipliers, specified as either 'Use 4 multipliers and 2
adders' or 'Use 3 multipliers and 5 adders'. Depending on your synthesis tool and target
device, one option may be faster or smaller.

OutputSize — Size of output data
'Same as number of frequency bands' (default) | 'Same as input size'

Size of output data, specified as:

• 'Same as number of frequency bands' — Output data is a 1-by-M vector, where M is the
FFT length.

• 'Same as input size' — Output data is an M-by-1 vector, where M is the input vector size.

The output order is bit natural for both output sizes.

Normalize — FFT scaling
true (default) | false

FFT output scaling, specified as either:

2 System Objects

2-120

• true — The FFT implements an overall 1/N scale factor by scaling the result of each pipeline
stage by 2. This adjustment keeps the output of the FFT in the same amplitude range as its input.

• false — The FFT avoids overflow by increasing the word length by one bit at each stage.

RoundingMethod — Rounding mode used for internal fixed-point calculations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. The object uses fixed-point arithmetic for internal
calculations when the input is any integer or fixed-point data type. This option does not apply when
the input is single or double. Each FFT stage rounds after the twiddle factor multiplication but
before the butterflies. Rounding can also occur when casting the coefficients and the output of the
polyphase filter to the data types you specify.

OverflowAction — Overflow handling for internal fixed-point calculations
'Wrap' (default) | 'Saturate'

“Overflow Handling” used for fixed-point operations. The object uses fixed-point arithmetic for
internal calculations when the input is any integer or fixed-point data type. This option does not apply
when the input is single or double. This option applies to casting the coefficients and the output of
the polyphase filter to the data types you specify.

The FFT algorithm avoids overflow by either scaling the output of each stage (Normalize enabled),
or by increasing the word length by 1 bit at each stage (Normalize disabled).

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

The object casts the polyphase filter coefficients to this data type, using the rounding and overflow
settings you specify. When you specify 'Same word length as input' (default), the object selects
the binary point using fi() best-precision rules.

FilterOutputDataType — Data type of output of polyphase filter
'Same word length as input' (default) | 'Full precision' | numerictype object

Data type of the output of the polyphase filter, specified as 'Same word length as input',
'Full precision', or a numerictype object. The object casts the output of the polyphase filter
(the input to the FFT) to this data type, using the rounding and overflow settings you specify. When
you specify 'Full precision', the object selects a best-precision binary point by considering the
values of your filter coefficients and the range of your input data type.

By default, the FFT logic does not change the data type. When you disable Normalize, the FFT
algorithm avoids overflow by increasing the word length by 1 bit at each stage.

ResetInputPort — Enable reset argument
false (default) | true

Enable reset input argument to the object. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true), the
object captures data for processing.

StartOutputPort — Enable start output argument
false (default) | true

Enable startOut output argument of the object. When enabled, the object returns an additional
output signal that is 1 (true) on the first cycle of each valid output frame.

 dsphdl.Channelizer

2-121

EndOutputPort — Enable end output argument
false (default) | true

Enable endOut output argument of the object. When enabled, the object returns an additional output
signal that is 1 (true) on the first cycle of each valid output frame.

Usage

Syntax
[dataOut,validOut] = channelizer(dataIn,validIn)
[dataOut,validOut] = channelizer(dataIn,validIn,reset)
[dataOut,startOut,endOut,validOut] = channelizer(___)

Description

[dataOut,validOut] = channelizer(dataIn,validIn) filters and computes a fast Fourier
transform, and returns the frequency channels, dataOut, detected in the input signal, dataIn, when
validIn is 1 (true). The validIn and validOut arguments are logical scalars that indicate the
validity of the input and output signals, respectively.

[dataOut,validOut] = channelizer(dataIn,validIn,reset) returns the frequency
channels, dataOut, detected in the input signal, dataIn, when validIn is 1 (true) and reset is 0
(false). When reset is 1 (true), the object stops the current calculation and clears all internal state.

To use this syntax, set the ResetInputPort property to true. For example:

channelizer = dsphdl.Channelizer(...,'ResetInputPort',true);
...
[dataOut,validOut] = channelizer(dataIn,validIn,reset)

[dataOut,startOut,endOut,validOut] = channelizer(___) returns the frequency
channels, dataOut, computed from the input arguments of any of the previous syntaxes. startOut
is 1 (true) for the first sample of a frame of output data. endOut is 1 (true) for the last sample of a
frame of output data.

To use this syntax, set the StartOutputPort and EndOutputPort properties to true. For example:
channelizer = dsphdl.Channelizer(...,'StartOutputPort',true,'EndOutputPort',true);
...
[dataOut,startOut,endOut,validOut] = channelizer(dataIn,validIn)

Input Arguments

dataIn — Input data
scalar or column vector of real or complex values

Input data, specified as a scalar or column vector of real or complex values.

The vector size must be a power of 2 and in the range [2, 64], and is not greater than the number of
channels (FFT length).

double and single data types are supported for simulation, but not for HDL code generation.

The object does not accept uint64 data.

2 System Objects

2-122

Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set ResetInputPort to true.
Data Types: logical

Output Arguments

dataOut — Frequency channel output data
row vector

Frequency channel output data, returned as a row vector.

• If you set OutputSize to 'Same as number of frequency bands' (default), the output data
is a 1-by-M vector, where M is the FFT length.

• If you set OutputSize to 'Same as input size', the output data is an M-by-1 vector, where M
is the input vector size.

The output order is bit natural for either output size. The data type is a result of the
FilterOutputDataType and the FFT bit growth necessary to avoid overflow.

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

startOut — First valid cycle of output data
logical scalar

First sample of output frame, returned as a logical scalar. The object sets startOut to 1 (true)
during the first valid sample on dataOut.

 dsphdl.Channelizer

2-123

Dependencies

To enable this argument, set StartOutputPort to true.
Data Types: logical

endOut — Last valid cycle of output data
logical scalar

Last sample of output frame, returned as a logical scalar. The object sets endOut to 1 (true) during
the last valid sample on dataOut.

Dependencies

To enable this argument, set EndOutputPort to true.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.Channelizer
getLatency Latency of channelizer calculation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Channelizer for HDL Generation

Create a function that contains a channelizer object and supports HDL code generation.

Create the specifications and input signal. The signal has 8 frequency channels.

N = 8;
loopCount = 1024;
offsets = [-40 -30 -20 10 15 25 35 -15];
sinewave = dsp.SineWave('ComplexOutput',true,'Frequency', ...
 offsets+(-375:125:500),'SamplesPerFrame',loopCount);
spectrumAnalyzer = dsp.SpectrumAnalyzer('ShowLegend',true, ...
 'SampleRate',sinewave.SampleRate/N);

Write a function that creates and calls the channelizer System object™. You can generate HDL from
this function.

2 System Objects

2-124

function [yOut,validOut] = HDLChannelizer8(yIn,validIn)
%HDLChannelizer8
% Process one sample of data using the dsphdl.Channelizer System object
% yIn is a fixed-point scalar or column vector.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent channelize8;
 coder.extrinsic('tf');
 coder.extrinsic('dsp.Channelizer');

 if isempty(channelize8)
 % Use filter coeffs from non-HDL channelizer, or supply your own.
 channelizer = coder.const(dsp.Channelizer('NumFrequencyBands',8));
 coeff = coder.const(tf(channelizer));
 channelize8 = dsphdl.Channelizer('NumFrequencyBands',8,'FilterCoefficients',coeff);
 end
 [yOut,validOut] = channelize8(yIn,validIn);
end

Channelize the input data by calling the object for each data sample.

y = zeros(loopCount/N,N);
validOut = false(loopCount/N,1);
yValid = zeros(loopCount/(N*N),N);
for reps=1:20
 x = fi(sum(sinewave(),2),1,18);
 for loop=1:length(x)
 [y(loop,:),validOut(loop)]= HDLChannelizer8(x(loop),true);
 end
 yValid = y(validOut == 1,:);
 spectrumAnalyzer(yValid);
end

 dsphdl.Channelizer

2-125

Explore Latency of Channelizer Object

The latency of the dsphdl.Channelizer object varies with the FFT length, filter structure, vector
size, and input type. Use the getLatency function to find the latency of a particular configuration.
The latency is measured as the number of cycles between the first valid input and the first valid
output, assuming that the input is contiguous. The number of filter coefficients does not affect the
latency. Setting the output size equal to the input size reduces the latency because the samples are
not saved and reordered.

Create a dsphdl.Channelizer object with filter structure set to direct form transposed and request
the latency.

channelize = dsphdl.Channelizer('NumFrequencyBands',512, 'FilterStructure','Direct form transposed');
L512 = getLatency(channelize)

L512 = 1118

Request hypothetical latency information about a similar object with a different number of frequency
bands (FFT length). The properties of the original object do not change.

L256 = getLatency(channelize,256)

L256 = 592

2 System Objects

2-126

N = channelize.NumFrequencyBands

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getLatency(channelize,256,8)

L256v8 = 132

Enable scaling at each stage of the FFT. The latency does not change.

channelize.Normalize = true;
L512n = getLatency(channelize)

L512n = 1118

Request the same output size and order as the input data. The latency decreases because the object
does not need to store and reorder the data before output. The default input size is scalar.

channelize.OutputSize = 'Same as input size';
L512r = getLatency(channelize)

L512r = 1084

Check the latency of a vector input implementation where the input and output are the same size.
Specify the current value of the FFT length and a vector size of 8 samples. The latency decreases
because the object computes results in parallel when the input is a vector.

L512rv8 = getLatency(channelize,channelize.NumFrequencyBands,8)

L512rv8 = 218

Check the latency of a vector input implementation where the input type is complex. Specify the
current value of the FFT length and a vector size of 16 samples.

L512rv16i = getLatency(channelize,channelize.NumFrequencyBands,16,true)

L512rv16i = 152

Algorithms
This object implements the algorithm described on the Channelizer block reference page.

Note The output of the dsphdl.Channelizer object does not match the output from the
dsp.Channelizer object sample-for-sample. This mismatch is because the objects apply the input
samples to the subfilters in different orders. The dsphdl.Channelizer object applies input X(0) to
subfilter EM-1(z), X(1) to subfilter EM-2(z), ..., X(M-1) to subfilter E0(z). The channels detected by both
objects match, when analyzed over multiple frames.

Latency

The latency varies with the FFT length, vector size, and filter structure. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous. The filter

 dsphdl.Channelizer

2-127

coefficients do not affect the latency. Setting the output size equal to the input size reduces the
latency, because the samples are not saved and reordered.

Control Signals

This diagram shows validIn and validOut signals for contiguous input data with a vector size of
16, an FFT length of 512, and when you select the Direct form transposed filter architecture. In
this example, the output vector size is specified same as the input vector size.

The diagram also shows the optional startOut and endOut signals that indicate frame boundaries.
When enabled, startOut pulses for one cycle with the first validOut of the frame, and endOut
pulses for one cycle with the last validOut of the frame.

If you apply continuous input frames (no gap in validIn between frames), the output will also be
continuous, after the initial latency.

The validIn signal can be noncontiguous. Data accompanied by a validIn signal is stored until a
frame is filled. Then the data in output is a contiguous frame of N/M cycles. This diagram shows
noncontiguous input and contiguous output for an FFT length of 512 and a vector size of 16 samples.

Performance

These resource and performance data are the place-and-route results from the generated HDL
targeted to a Xilinx Zynq- 7000 ZC706 evaluation board. The three examples in the tables use this
common configuration.

• FFT length (default) — 8
• Filter length — 96 coefficients
• Filter structure — Direct form transposed
• 16-bit complex input data
• Coefficient data type — Same word length as input
• Filter output data type — Same word length as input
• Complex multiplication — Use 4 multipliers and 2 adders
• Output scaling — Enabled

2 System Objects

2-128

• Output vector size — Same as input size

Performance of the synthesized HDL code varies with your target and synthesis options.

For scalar input, the design achieves a clock frequency of 506.84 MHz. The latency is 51 cycles. The
subfilters share each multiplier eight (N) times. The design uses these resources.

Resource Number Used
LUT 2898
FFS 3746
Xilinx LogiCORE DSP48 28

For four-sample vector input, the design achieves a clock frequency of 452 MHz. The latency is 37
cycles. The subfilters share each multiplier twice (N/M). The design uses these resources.

Resource Number Used
LUT 1991
FFS 8305
Xilinx LogiCORE DSP48 104

For eight-sample vector input, the design achieves a clock frequency of 360 MHz. The latency is 18
cycles. When the input size is the same as the FFT length, the subfilters do not share any multipliers.
The design uses these resources.

Resource Number Used
LUT 1683
FFS 2992
Xilinx LogiCORE DSP48 208

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLChannelizer and was part of the DSP
System Toolbox product.

The System object now supports fully parallel systolic architecture when you specify the Filter
structure property to Direct form systolic.

FFT length of 4
Behavior changed in R2022a

This System object now supports an FFT length of 4. In previous releases the FFT length had to be a
power of 2 from 23 to 216.

Direct form systolic filter structure support
Behavior changed in R2022a

This System object now supports direct form systolic filter structure.

 dsphdl.Channelizer

2-129

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Blocks
Channelizer | Channel Synthesizer | FFT

Objects
dsphdl.ChannelSynthesizer | dsphdl.FFT

Introduced in R2017a

2 System Objects

2-130

dsphdl.FIRDecimator
Package: dsphdl

Finite impulse response (FIR) decimation filter

Description
The dsphdl.FIRDecimator System object implements a single-rate polyphase FIR decimation filter
that is optimized for HDL code generation. The object provides a hardware-friendly interface with
input and output control signals. To provide a cycle-accurate simulation of the generated HDL code,
the object models architectural latency including pipeline registers and resource sharing.

The object accepts scalar or vector input. When you use vector input and the vector size is less than
the decimation factor, the decimation factor must be an integer multiple of the vector size. In this
case, the output is scalar and an output valid signal indicates which samples are valid after
decimation. The output data is valid every DecimationFactor/VectorSize samples. The waveform
shows an input vector of four samples and a decimation factor of eight. The output data is a scalar
that is valid every second cycle.

When you use vector input and the vector size is greater than the decimation factor, the vector size
must be an integer multiple of the decimation factor. In this case, the output is a vector of VectorSize/
DecimationFactor samples. The waveform shows an input vector of eight samples and a decimation
factor of four. The output data is a vector of two samples on every cycle.

The object provides two filter structures. The direct form systolic architecture provides an
implementation that makes efficient use of Intel and Xilinx DSP blocks. This architecture can be fully
parallel or serial. To use a serial architecture, the input samples must be spaced out with a regular
number of invalid cycles between the valid samples. The direct form transposed architecture is a fully
parallel implementation and is suitable for FPGA and ASIC applications. For a filter implementation
that matches multipliers, pipeline registers, and pre-adders to the DSP configuration of your FPGA
vendor, specify your target device when you generate HDL code.

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

The object implements one filter for each sample in the input vector. The object then shares this filter
between the polyphase subfilters by interleaving the subfilter coefficients in time.

 dsphdl.FIRDecimator

2-131

To filter and decimate input data with an HDL-optimized algorithm:

1 Create the dsphdl.FIRDecimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firDecim = dsphdl.FIRDecimator
firDecim = dsphdl.FIRDecimator(dec,num)
firDecim = dsphdl.FIRDecimator(___ ,Name,Value)

Description

firDecim = dsphdl.FIRDecimator creates a default HDL-optimized FIR decimation filter System
object.

firDecim = dsphdl.FIRDecimator(dec,num) sets the DecimationFactor property to dec and
the Numerator property to num.

firDecim = dsphdl.FIRDecimator(___ ,Name,Value) sets properties by using one or more
name-value pairs in addition to any input argument combination from previous syntaxes. Enclose
each property name in quotes. For example, 'FilterStructure','Direct form transposed'
specifies the filter architecture as a fully parallel implementation that is suitable for FPGA and ASIC
applications.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

Numerator — FIR filter coefficients
fir1(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the object casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can modify the coefficient data type by using the
CoefficientsDataType property.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients using a linear-phase
filter design function.

2 System Objects

2-132

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed'

HDL filter architecture, specified as one of these structures:

• 'Direct form systolic' — This architecture provides a fully parallel or partly serial filter
implementation that makes efficient use of Intel and Xilinx DSP blocks. For a partly serial
implementation, specify a value greater than 1 for the NumCycles property. You cannot use frame-
based input with the partly-serial architecture.

When NumCycles is greater than 1, the object chooses a filter architecture that results in the
fewest multipliers. If NumCycles allows for a single multiplier in each subfilter, then the object
implements a single serial filter and decimates the output samples.

• 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications.

The object implements a polyphase decomposition filter by using dsphdl.FIRFilter objects. All
implementations share resources by interleaving the subfilter coefficients over one filter
implementation for each sample in the input vector.

For architecture details, see “FIR Filter Architectures for FPGAs and ASICs”.

DecimationFactor — Decimation factor
2 (default) | integer greater than two

Decimation factor, specified as integer greater than two. When you use vector input and the vector
size is less than the decimation factor, the decimation factor must be an integer multiple of the vector
size. When you use vector input and the vector size is greater than the decimation factor, the vector
size must be an integer multiple of the decimation factor.

NumCycles — Serialization requirement for input timing
1 (default) | positive integer

Serialization requirement for input timing, specified as a positive integer. This property represents N,
the minimum number of cycles between valid input samples. To implement a fully serial architecture,
set NumCycles to a value greater than the filter length, L, or to Inf.

The object applies coefficient optimizations before serialization, so the sharing factor of the final filter
can be lower than the number of cycles that you specified.

Dependencies

To enable this property, set FilterStructure to 'Direct form systolic'.

You cannot use frame-based input with NumCycles greater than 1.

Data Types

RoundingMethod — Rounding method for type-casting output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The object uses this property when casting the output to the data

 dsphdl.FIRDecimator

2-133

type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the OutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' or a numerictype
object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

OutputDataType — Data type of filter output
'Full precision' (default) | 'Same word length as input' | numerictype object

Data type of the filter output, specified as 'Same word length as input', 'Full precision',
or a numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings
of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

2 System Objects

2-134

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect data path registers to generated HDL global reset signal, specified as true or
false. Set this property to true to connect the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation behavior in
MATLAB. When you set this property to false, the generated HDL global reset clears only the
control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax
[dataOut,validOut] = firDecim(dataIn,validIn)
[dataOut,validOut] = firDecim(dataIn,validIn,reset)

Description

[dataOut,validOut] = firDecim(dataIn,validIn) filters the input data only when validIn
is true.

[dataOut,validOut] = firDecim(dataIn,validIn,reset) filters data when reset is false.
When reset is true, the object resets the filter registers. The object expects the reset argument
only when you set the ResetInputPort property to true.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Input Arguments

dataIn — Input data
scalar | vector

Input data, specified as a real- or complex-valued scalar or vector. When you use vector input and the
vector size is less than the decimation factor, the decimation factor must be an integer multiple of the
vector size. When you use vector input and the vector size is greater than the decimation factor, the
vector size must be an integer multiple of the decimation factor. The vector size must be less than or
equal to 64.

When the input data type is an integer type or fixed-point type, the object uses fixed-point arithmetic
for internal calculations.

 dsphdl.FIRDecimator

2-135

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — Filtered output data
scalar | vector

Filtered output data, returned as a real- or complex-valued scalar or column vector. When the input
data is floating point, the output data inherits the data type of the input data. When the input data is
an integer type or fixed-point type, the OutputDataType property specifies the output data type.

The output valid signal indicates which samples are valid after decimation. When the input vector
size is greater than the decimation factor, the output is a vector of VectorSize/DecimationFactor
samples.
Data Types: fi | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

2 System Objects

2-136

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.FIRDecimator
getLatency Latency of FIR decimation filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Algorithms
This System object implements the algorithms described on the FIR Decimator block reference page.

Note The output of the dsphdl.FIRDecimator object does not match the output from the
dsp.FIRDecimation object sample-for-sample. This difference is mainly because of the phase that
the samples are applied across the subfilters. To match the dsp.FIRDecimation object, apply
DecimationFactor – 1 zeroes to the dsphdl.FIRDecimator object at the start of the data stream.

The dsp.FIRDecimation object also uses slightly different data types for full-precision calculations.
The different data types can also introduce differences in output values if the values overflow the
internal datatypes.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLFIRDecimator and was part of the DSP
System Toolbox product.

Serial systolic architecture

This object now supports partly and fully serial systolic architecture. This architecture enables you to
share hardware resources if there is a regular pattern of invalid cycles between valid input samples.
To use the serial systolic architecture, set Structure to 'Direct form systolic' and
NumCycles to a value greater than 1.

Input vector size can be greater than decimation factor

In previous releases, the object did not support input vector sizes greater than the decimation factor.

 dsphdl.FIRDecimator

2-137

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsphdl.FIRFilter

Blocks
FIR Decimator | Discrete FIR Filter

Introduced in R2020b

2 System Objects

2-138

dsphdl.FIRInterpolator
Package: dsphdl

Finite impulse response (FIR) interpolation filter

Description
The dsphdl.FIRInterpolator System object implements a single-rate polyphase FIR interpolation
filter that is optimized for HDL code generation. The object provides a hardware-friendly interface
with input and output control signals. To provide a cycle-accurate simulation of the generated HDL
code, the object models architectural latency including pipeline registers and resource sharing.

The object accepts scalar or vector input and outputs a scalar or vector depending on the
interpolation factor and the number of cycles between input samples. The object implements a
polyphase decomposition with InterpolationFactor subfilters. Each subfilter can implement a serial
architecture if there is regular spacing between input samples.

The object provides two filter structures. The direct form systolic architecture provides a fully
parallel implementation that makes efficient use of Intel and Xilinx DSP blocks. The direct form
transposed architecture is a fully parallel implementation that is suitable for FPGA and ASIC
applications. For a filter implementation that matches multipliers, pipeline registers, and pre-adders
to the DSP configuration of your FPGA vendor, specify your target device when you generate HDL
code.

All filter structures optimize hardware resources by sharing multipliers for symmetric or
antisymmetric filters and by removing the multipliers for zero-valued coefficients such as in half-band
filters and Hilbert transforms.

To filter and interpolate input data with an HDL-optimized algorithm::

1 Create the dsphdl.FIRInterpolator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
firInterp = dsphdl.FIRInterpolator
firInterp = dsphdl.FIRInterpolator(INTERP,NUM)
firInterp = dsphdl.FIRInterpolator(___ ,Name,Value)

Description

firInterp = dsphdl.FIRInterpolator returns a System object firInterp, which upsamples
and filters the input signal with the default settings.

 dsphdl.FIRInterpolator

2-139

firInterp = dsphdl.FIRInterpolator(INTERP,NUM) returns a System object firInterp
with the InterpolationFactor property set to INTERP and the Numerator property set to NUM.

firInterp = dsphdl.FIRInterpolator(___ ,Name,Value) returns an HDL FIR Interpolation
System object firInterp, with specified property Name set to the specified Value. You can specify
additional properties as name-value arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Main

FilterStructure — HDL filter architecture
'Direct form systolic' (default) | 'Direct form transposed'

HDL filter architecture, specified as one of these structures:

• 'Direct form systolic' — This architecture provides a fully parallel filter implementation
that makes efficient use of Intel and Xilinx DSP blocks. For a partly serial implementation, specify
a value greater than 1 for the NumCycles property. You cannot use frame-based input with the
partly serial architecture.

• 'Direct form transposed' — This architecture is a fully parallel implementation that is
suitable for FPGA and ASIC applications.

The object implements a polyphase decomposition filter by using dsphdl.FIRFilter System
objects. Each filter phase shares resources internally where coefficients and serial options allow. For
architecture details, see “FIR Filter Architectures for FPGAs and ASICs”.

Numerator — FIR filter coefficients
fir1(35,0.4) (default) | real- or complex-valued vector

FIR filter coefficients, specified as a real- or complex-valued vector. You can specify the vector as a
workspace variable or as a call to a filter design function. When the input data type is a floating-point
type, the object casts the coefficients to the same data type as the input. When the input data type is
an integer type or a fixed-point type, you can modify the coefficient data type by using the
CoefficientsDataType property.
Example: firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]) defines coefficients by using a linear-phase
filter design function.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

InterpolationFactor — Interpolation factor
2 (default) | integer greater than two

Interpolation factor, specified as integer greater than two. The output vector size is InputSize *
InterpolationFactor. The output vector size must be less than 64 samples.

2 System Objects

2-140

NumCycles — Minimum number of cycles between valid input samples
1 (default) | positive integer

Specify the minimum number of cycles between the valid input samples as 1 or a positive integer.
This property represents N, the minimum number of cycles between valid input samples. When you
set NumCycles greater than the filter length, L, and the input and coefficients are both real, the filter
uses InterpolationFactor multipliers.

Because the object applies coefficient optimizations before serialization, the sharing factor of the final
filter can be lower than the number of cycles that you specified.

Dependencies

To enable this parameter, set FilterStructure to 'Direct form systolic'.

You cannot use frame-based input with NumCycles greater than 1.

Data Types

RoundingMethod — Rounding method for type-casting output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding method for type-casting the output, specified as 'Floor', 'Ceiling', 'Convergent',
'Nearest', 'Round', or 'Zero'. The object uses this property when casting the output to the data
type specified by the OutputDataType property. When the input data type is floating point, the
object ignores this property. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output, specified as 'Wrap' or 'Saturate'. The object uses
this property when casting the output to the data type specified by the OutputDataType property.
When the input data type is floating point, the object ignores this property. For more details, see
“Overflow Handling”.

CoefficientsDataType — Data type of filter coefficients
'Same word length as input' (default) | numerictype object

Data type of filter coefficients, specified as 'Same word length as input' or a numerictype
object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the filter coefficients to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

The recommended data type for this parameter is 'Same word length as input'.

OutputDataType — Data type of filter output
'Full precision' (default) | 'Same word length as input' | numerictype object

 dsphdl.FIRInterpolator

2-141

Data type of the filter output, specified as 'Same word length as input', 'Full precision',
or a numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object casts the output of the filter to the specified data type. The quantization uses the settings
of the RoundingMethod and OverflowAction properties. When the input data type is floating
point, the object ignores this property.

The object increases the word length for full precision inside each filter tap and casts the final output
to the specified type. The maximum final internal data type (WF) depends on the input data type (WI),
the coefficient data type (WC), and the number of coefficients (L) and is given by

WF = WI + WC + ceil(log2(L)).

Because the coefficient values limit the potential growth, usually the actual full-precision internal
word length is smaller than WF.

Control Arguments

ResetInputPort — Option to enable reset input argument
false (default) | true

Option to enable reset input argument, specified as true or false. When you set this property to
true, the object expects a value for the reset input argument. The reset signal implements a local
synchronous reset of the data path registers.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

HDLGlobalReset — Option to connect data path registers to generated HDL global reset
signal
false (default) | true

Option to connect data path registers to generated HDL global reset signal, specified as true or
false. Set this property to true to connect the generated HDL global reset signal to the data path
registers. This property does not change the arguments of the object or modify simulation behavior in
MATLAB. When you set this property to false, the generated HDL global reset clears only the
control path registers. The generated HDL global reset can be synchronous or asynchronous
depending on your HDL code generation settings.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Usage

Syntax
[dataOut,validOut] = firInterp(dataIn,validIn)
[dataOut,validOut] = firInterp(dataIn,validIn,reset)

2 System Objects

2-142

Description

[dataOut,validOut] = firInterp(dataIn,validIn) filters the input data only when
validIn is true.

[dataOut,validOut] = firInterp(dataIn,validIn,reset) filters data when reset is
false. When reset is true, the object resets the filter registers. The object expects the reset
argument only when you set the ResetInputPort property to true.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.

Input Arguments

dataIn — Input data
real or complex scalar or vector

Input data, specified as a real- or complex-valued scalar or vector. The vector size must be less than
or equal to 64. When the input data type is an integer type or fixed-point type, the object uses fixed-
point arithmetic for internal calculations.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32
Complex Number Support: Yes

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

reset — Clears internal states
logical scalar

Control signal that clears internal states. When reset is 1 (true), the object stops the current
calculation and clears internal states. When the reset is 0 (false) and the input valid is 1 (true),
the block captures data for processing.

For more reset considerations, see the “Reset Signal” section on the “Hardware Control Signals”
page.
Dependencies

To enable this argument, set the ResetInputPort property to true.
Data Types: logical

Output Arguments

dataOut — Interpolated output data
real or complex scalar or vector

Interpolated output data, returned as a real or complex scalar or vector. The vector size is InputSize *
InterpolationFactor. When NumCycles is greater than InterpolationFactor, scalar output

 dsphdl.FIRInterpolator

2-143

samples are spaced out with floor(NumCycles/InterpolationFactor) invalid cycles, and the
output valid signal indicates which samples are valid after interpolation.

When the input data is floating point, the output data inherits the data type of the input data. When
the input data is an integer type or fixed-point type, the OutputDataType property specifies the
output data type.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

ready — Indicates object is ready for new input data
logical scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to dsphdl.FIRInterpolator
getLatency Latency of FIR filter

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Algorithms
This System object implements the algorithms described on the FIR Interpolator block reference
page.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 System Objects

2-144

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Objects
dsphdl.FIRDecimator

Blocks
FIR Interpolator | FIR Decimator | Discrete FIR Filter

Introduced in R2022a

 dsphdl.FIRInterpolator

2-145

dsphdl.BiquadFilter
Package: dsphdl

Biquadratic IIR (SOS) filter

Description
A biquad filter is a form of infinite-impulse response (IIR) filter where the numerator and denominator
are split into a series of second-order sections connected by gain blocks. This type of filter can
replace a large FIR filter that uses an impractical amount of hardware resources. Designs often use
biquad filters as DC blocking filters or to meet a specification originally implemented with an analog
filter, such as a pre-emphasis filter.

To filter input data with an HDL-optimized biquad filter:

1 Create the dsphdl.BiquadFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
myfilt = dsphdl.BiquadFilter
myfilt = dsphdl.BiquadFilter(Name,Value)

Description

myfilt = dsphdl.BiquadFilter creates an HDL-optimized biquad filter. The default filter is a
direct form II architecture with one section.

myfilt = dsphdl.BiquadFilter(Name,Value) sets properties using one or more name-value
pairs. Enclose each property name in single quotes.

For example:
myfilt = dsphdl.BiquadFilter('Structure','Direct form II transposed');
[dataOut,validOut] = myfilt(dataIn,validIn);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

2 System Objects

2-146

Structure — HDL filter architecture
'Direct form II' (default) | 'Direct form II transposed' | 'Pipelined feedback
form'

Both the 'Direct form II' and 'Direct form II transposed' architectures are pipelined
and quantized to fit well into FPGA DSP blocks. The output of these filters matches the output of the
DSP System Toolbox System objects dsp.SOSFilter and dsp.FourthOrderSectionFilter.
These architectures minimize the number of multipliers used by the filter but have a critical path
through the feedback loop and sometimes cannot achieve higher clock rates.

'Pipelined feedback form' implements a pipelined architecture that uses more multipliers than
either direct form II structure, but achieves higher clock rates after synthesis. Frame-based input is
supported only when you use 'Pipelined feedback form'. The output of the pipelined filter is
slightly different than the DSP System Toolbox functions dsp.SOSFilter and
dsp.FourthOrderSectionFilter because of the timing of data samples applied in the pipelined
filter stages.

Numerator — Coefficients of filter numerator
[1,2,1] (default) | NumSections-by-3 matrix

Specify the numerator coefficients as a matrix of NumSections-by-3 values. NumSections is the
number of second-order filter sections. The object infers the number of filter sections from the size of
the numerator and denominator coefficients. The numerator coefficient and denominator coefficient
matrices must be the same size. The default filter has one section.

Denominator — Coefficients of filter denominator
[1,.1,.2] (default) | NumSections-by-3 matrix

Specify the denominator coefficients as a matrix of NumSections-by-3 values. The object assumes the
first denominator coefficient of each section is 1.0.NumSections is the number of second-order filter
sections. The object infers the number of sections from the size of the numerator and denominator
coefficients. The numerator coefficient and denominator coefficient matrices must be the same size.
The default filter has one section.

ScaleValues — Gain values applied before and after second-order filter sections
[1] (default) | vector of 1 to NumSections+1 values

Specify the gain values as a vector of up to NumSections+1 values. NumSections is the number of
second-order filter sections. The object infers the number of sections from the size of the numerator
and denominator coefficients. If the vector has only one value, the object applies that gain before the
first section. If you specify fewer values than there are filter sections, the object sets the remaining
section gain values to one. The diagram shows a 3-section filter and the locations of the four scale
values before and after the sections.

Implementing these gain factors outside the filter sections reduces the multipliers needed to
implement the numerator of the filter.

 dsphdl.BiquadFilter

2-147

Data Types

Rounding — Rounding method for type-casting the output
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode for type-casting the output and accumulator values to the data types specified by the
OutputDataType and AccumulatorDataType properties. When the input data type is floating
point, the object ignores this parameter. For more details, see “Rounding Modes”.

OverflowAction — Overflow handling for type-casting the output
'Wrap' (default) | 'Saturate'

Overflow handling for type-casting the output and accumulator values to the data types specified by
the OutputDataType and AccumulatorDataType properties. When the input data type is floating
point, the object ignores the OverflowAction property. For more details, see “Overflow Handling”.

NumeratorDataType — Data type of numerator coefficients
'Same word length as first input' (default) | numerictype object

Data type of numerator coefficients, specified as 'Same word length as first input' or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the numerator coefficients to the specified data type. The quantization rounds
to the nearest representable value and saturates on overflow. When the input data type is floating
point, the object ignores this property.

The object returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

DenominatorDataType — Data type of denominator coefficients
'Same word length as first input' (default) | numerictype object

Data type of denominator coefficients, specified as 'Same word length as first input' or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the denominator coefficients to the specified data type. The quantization rounds
to the nearest representable value and saturates on overflow. When the input data type is floating
point, the object ignores this property.

The object returns a warning if the data type of the coefficients does not have enough fractional
length to represent the coefficients accurately.

ScaleValueDataType — Data type of section gains
'Same word length as first input' (default) | numerictype object

2 System Objects

2-148

Data type of the scale values, specified as 'Same word length as first input' or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the scale values to the specified data type. The quantization rounds to the
nearest representable value and saturates on overflow. When the input data type is floating point, the
object ignores this property.

AccumulatorDataType — Data type of accumulator signals within each section
'Same as first input' (default) | numerictype object

Data type of accumulator signals within each section (as indicated in the diagrams in the
“Algorithms” on page 1-138 section), specified as 'Same as first input', or a numerictype
object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the output of the filter to the specified data type. The quantization uses the
settings of the RoundingMethod and OverflowAction properties. When the input data type is
floating point, the object ignores this property.

OutputDataType — Data type of filter output
'Same as first input' (default) | 'Full precision' | numerictype object

Data type of filter output, specified as 'Same as first input', 'Full precision', or a
numerictype object. To specify a numerictype object, call numerictype(s,w,f), where:

• s is 1 for signed and 0 for unsigned.
• w is the word length in bits.
• f is the number of fractional bits.

The object type-casts the output of the filter to the specified data type. The quantization uses the
settings of the RoundingMethod and OverflowAction properties. When the input data type is
floating point, the object ignores this property.

Usage

Syntax
[dataOut,validOut] = myfilt(dataIn,validIn)

Description

[dataOut,validOut] = myfilt(dataIn,validIn) filters the input data only when validIn is
true.

 dsphdl.BiquadFilter

2-149

Input Arguments

dataIn — Input data
scalar or column vector of real values

Input data, specified as a scalar or column vector of real values. When the input has an integer or
fixed-point data type, the object uses fixed-point arithmetic for internal calculations.

Vector input is supported only when you set the Structureproperty to 'Pipelined feedback
form'. The object accepts vectors up to 64 samples, but large vector sizes can make the calculation
of internal data types challenging. Vector sizes of up to 16 samples are practical for hardware
implementation.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

Output Arguments

dataOut — Filtered output data
scalar or column vector of real values

Filtered output data, returned as a scalar or column vector of real values. The output dimensions
match the input dimensions. When the input data is floating point, the output data inherits the data
type of the input data. When the input data is an integer type or fixed-point type, the
OutputDataType property determines the output data type.
Data Types: fi | single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

2 System Objects

2-150

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Algorithms
This System object implements the algorithms described on the Biquad Filter block reference page.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Biquad Filter

Introduced in R2022a

 dsphdl.BiquadFilter

2-151

dsphdl.ComplexToMagnitudeAngle
Package: dsphdl

Magnitude and phase angle of complex signal

Description
The dsphdl.ComplexToMagnitudeAngle System object computes the magnitude and phase angle
of a complex signal. It provides hardware-friendly control signals. The System object uses a pipelined
coordinate rotation digital computer (CORDIC) algorithm to achieve an HDL-optimized
implementation.

To compute the magnitude and phase angle of a complex signal:

1 Create the dsphdl.ComplexToMagnitudeAngle object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
magAngle = dsphdl.ComplexToMagnitudeAngle
magAngle = dsphdl.ComplexToMagnitudeAngle(Name,Value)

Description

magAngle = dsphdl.ComplexToMagnitudeAngle returns a
dsphdl.ComplexToMagnitudeAngle System object, magAngle, that computes the magnitude and
phase angle of a complex input signal.

magAngle = dsphdl.ComplexToMagnitudeAngle(Name,Value) sets properties of magAngle
using one or more name-value pairs. Enclose each property name in single quotes.
Example: magAngle = dsphdl.ComplexToMagnitudeAngle('AngleFormat','Radians')

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

OutputValue — Type of values to return
'Magnitude and angle' (default) | 'Magnitude' | 'Angle'

2 System Objects

2-152

Type of output values to return, specified as 'Magnitude and angle', 'Magnitude', or 'Angle'.
You can choose for the object to return the magnitude of the input signal, or the phase angle of the
input signal, or both.

AngleFormat — Format of phase angle output value
'Normalized' (default) | 'Radians'

Format of the phase angle output value from the object, specified as:

• 'Normalized' — Fixed-point format that normalizes the angle in the range [–1,1].
• 'Radians' — Fixed-point values in the range [π,−π].

ScaleOutput — Scale output by inverse of CORDIC gain factor
true (default) | false

Scale output by the inverse of the CORDIC gain factor, specified as true or false. The object
implements this gain factor with either CSD logic or a multiplier, according to the ScalingMethod
parameter.

Note If your design includes a gain factor later in the datapath, you can set ScaleOutput to false,
and include the CORDIC gain factor in the later gain. For calculation of this gain factor, see
“Algorithm” on page 2-159. The object replaces the first CORDIC iteration by mapping the input value
onto the angle range [0,π/4]. Therefore, the initial rotation does not contribute a gain term.

NumIterationsSource — Source of NumIterations
'Auto' (default) | 'Property'

Source of the NumIterations property for the CORDIC algorithm, specified as:

• 'Auto' — Sets the number of iterations to one less than the input word length. If the input is
double or single, the number of iterations is 16.

• 'Property' — Uses the NumIterations property.

For details of the CORDIC algorithm, see “Algorithm” on page 2-159.

NumIterations — Number of CORDIC iterations
integer less than or equal to one less than the input word length

Number of CORDIC iterations that the object executes, specified as an integer. The number of
iterations must be less than or equal to one less than the input word length.

For details of the CORDIC algorithm, see “Algorithm” on page 2-159.

Dependencies

To enable this property, set NumIterationsSource to 'Property'.

ScalingMethod — Implementation of CORDIC gain scaling
'CSD' (default) | 'Multipliers'

When you set this property to 'CSD', the object implements the CORDIC gain scaling by using a
shift-and-add architecture for the multiply operation. This implementation uses no multiplier
resources and may increase the length of the critical path in your design. When you set this property

 dsphdl.ComplexToMagnitudeAngle

2-153

to 'Multipliers', the object implements the CORDIC gain scaling with a multiplier and increases
the latency of the object by four cycles.

Dependencies

To enable this property, set the ScaleOutput property to true.

Usage

Syntax
[mag,angle,validOut] = magAngle(X,validIn)
[mag,validOut] = magAngle(X,validIn)
[angle,validOut] = magAngle(X,validIn)

Description

[mag,angle,validOut] = magAngle(X,validIn) converts a scalar or vector of complex values
X into their component magnitude and phase angles. validIn and validOut are logical scalars that
indicate the validity of the input and output signals, respectively.

[mag,validOut] = magAngle(X,validIn) returns only the component magnitudes of X.

To use this syntax, set OutputValue to 'Magnitude'.
Example: magAngle = dsphdl.ComplextoMagnitudeAngle('OutputValue','Magnitude');

[angle,validOut] = magAngle(X,validIn) returns only the component phase angles of X.

To use this syntax, set OutputValue to 'Angle'.
Example: magAngle = dsphdl.ComplextoMagnitudeAngle('OutputValue','Angle');

Input Arguments

X — Input signal
complex scalar or vector

Input signal, specified as a scalar, a column vector representing samples in time, or a row vector
representing channels. Using vector input increases data throughput while using more hardware
resources. The object implements the conversion logic in parallel for each element of the vector. The
input vector can contain up to 64 elements.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.
Data Types: logical

2 System Objects

2-154

Output Arguments

mag — Magnitude component of input signal
scalar | vector

Magnitude calculated from the complex input signal, returned as a scalar, a column vector
representing samples in time, or a row vector representing channels. The dimensions and data type
of this argument match the dimensions of the dataIn argument.
Dependencies

To enable this argument, set the OutputValue property to 'Magnitude and Angle' or
'Magnitude'.

angle — Phase angle component of input signal
scalar | vector

Angle calculated from the complex input signal, returned as a scalar, a column vector representing
samples in time, or a row vector representing channels. The dimensions and data type of this
argument match the dimensions of the dataIn argument. The format of this value depends on the
AngleFormat property.
Dependencies

To enable this argument, set the OutputValue property to 'Magnitude and Angle' or 'Angle'.

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the mag and/or angle arguments. When validOut is 0 (false), values from
the mag and/or angle arguments are not valid.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Magnitude and Phase Angle of Complex Signal

Use the dsphdl.ComplextoMagnitudeAngle object to compute the magnitude and phase angle of
a complex signal. The object uses a CORDIC algorithm for an efficient hardware implementation.

 dsphdl.ComplexToMagnitudeAngle

2-155

Choose word lengths and create random complex input signal. Then, convert the input signal to fixed-
point.

a = -4;
b = 4;
inputWL = 16;
inputFL = 12;
numSamples = 10;
reData = ((b-a).*rand(numSamples,1)+a);
imData = ((b-a).*rand(numSamples,1)+a);
dataIn = (fi(reData+imData*1i,1,inputWL,inputFL));
figure
plot(dataIn)
title('Random Complex Input Data')
xlabel('Real')
ylabel('Imaginary')

Write a function that creates and calls the System object™. You can generate HDL from this function.

function [mag,angle,validOut] = Complex2MagAngle(yIn,validIn)
%Complex2MagAngle
% Converts one sample of complex data to magnitude and angle data.
% yIn is a fixed-point complex number.
% validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent cma;

2 System Objects

2-156

 if isempty(cma)
 cma = dsphdl.ComplexToMagnitudeAngle('AngleFormat','Radians');
 end
 [mag,angle,validOut] = cma(yIn,validIn);
end

The number of CORDIC iterations determines the latency that the object takes to compute the answer
for each input sample. The latency is NumIterations+4. In this example, NumIterationsSource
is set to the default, 'Auto', so the object uses inputWL-1 iterations. The latency is inputWL+3.

latency = inputWL+3;
mag = zeros(1,numSamples+latency);
ang = zeros(1,numSamples+latency);
validOut = false(1,numSamples+latency);

Call the function to convert each sample. After you apply all input samples, continue calling the
function with invalid input to flush remaining output samples.

for ii = 1:1:numSamples
 [mag(ii),ang(ii),validOut] = Complex2MagAngle(dataIn(ii),true);
end
for ii = (numSamples+1):1:(numSamples+latency)
 [mag(ii),ang(ii),validOut(ii)] = Complex2MagAngle(fi(0+0*1i,1,inputWL,inputFL),false);
end
% Remove invalid output values
mag = mag(validOut == 1);
ang = ang(validOut == 1);
figure
polar(ang,mag,'--r') % Red is output from System object
title('Output from dsphdl.ComplexToMagnitudeAngle')
magD = abs(dataIn);
angD = angle(dataIn);
figure
polar(angD,magD,'--b') % Blue is output from abs and angle functions
title('Output from abs and angle Functions')

 dsphdl.ComplexToMagnitudeAngle

2-157

2 System Objects

2-158

Algorithms
CORDIC Algorithm

The CORDIC algorithm is a hardware-friendly method for performing trigonometric functions. It is an
iterative algorithm that approximates the solution by converging toward the ideal point. The object
uses CORDIC vectoring mode to iteratively rotate the input onto the real axis.

The Givens method for rotating a complex number x+iy by an angle θ is as follows. The direction of
rotation, d, is +1 for counterclockwise and −1 for clockwise.

xr = xcosθ− dysinθ
yr = ycosθ + dxsinθ

For a hardware implementation, factor out the cosθ to leave a tanθ term.

xr = cosθ x− dytanθ
yr = cosθ y + dxtanθ

To rotate the vector onto the real axis, choose a series of rotations of θn so that tanθn = 2−n. Remove
the cosθ term so each iterative rotation uses only shift and add operations.

Rxn = xn− 1− dnyn− 12−n

Ryn = yn− 1 + dnxn− 12−n

 dsphdl.ComplexToMagnitudeAngle

2-159

Combine the missing cosθ terms from each iteration into a constant, and apply it with a single
multiplier to the result of the final rotation. The output magnitude is the scaled final value of x. The
output angle, z, is the sum of the rotation angles.

xr = cosθ0cosθ1...cosθn RxN

z = ∑
0

N
dnθn

Modified CORDIC Algorithm

The convergence region for the standard CORDIC rotation is ≈±99.7°. To work around this limitation,
before doing any rotation, the object maps the input into the [0,π/4] range using the following
algorithm.

if abs(x) > abs(y)
 input_mapped = [abs(x), abs(y)];
else
 input_mapped = [abs(y), abs(x)];
end

At each iteration, the object rotates the vector towards the real axis. The rotation is counterclockwise
when y is negative, and clockwise when y is positive.

Quadrant mapping saves hardware resources and reduces latency by reducing the number of
CORDIC pipeline stages by one. The CORDIC gain factor, Kn, therefore does not include the n=0, or
cos(π/4) term.

Kn = cosθ1...cosθn = cos(26.565) ⋅ cos(14.036) ⋅ cos(7.125) ⋅ cos(3.576)

After the CORDIC iterations are complete, the object corrects the angle back to its original location.
First it adjusts the angle to the correct side of π/4.

if abs(x) > abs(y)
 angle_unmapped = CORDIC_out;
else
 angle_unmapped = (pi/2) - CORDIC_out;
end

Then it flips the angle to the original quadrant.

if (x < 0)
 if (y < 0)
 output_angle = - pi + angle_unmapped;e
 else
 output_angle = pi - angle_unmapped;
else
 if (y<0)
 output_angle = -angle_unmapped;

Architecture

The object generates a pipelined HDL architecture to maximize throughput. Each CORDIC iteration is
done in one pipeline stage. The gain multiplier, if enabled, is implemented with Canonical Signed
Digit (CSD) logic.

2 System Objects

2-160

If you use vector input, this object replicates this architecture in parallel for each element of the
vector.

Input Word Length Output Magnitude Word Length
fixdt(0,WL,FL) fixdt(0,WL+2,FL)
fixdt(1,WL,FL) fixdt(1,WL+1,FL)

Input Word Length Output Angle Word Length
fixdt([],WL,FL) Radians fixdt(1,WL+3,WL)

Normalized fixdt(1,WL+3,WL+2)

The CORDIC logic at each pipeline stage implements one iteration. For each pipeline stage, the shift
and angle rotation are constants.

 dsphdl.ComplexToMagnitudeAngle

2-161

When you set OutputValue to 'Magnitude', the object does not generate HDL code for the angle
accumulation and quadrant correction logic.

Normalized Angle Format

This format normalizes the fixed-point radian angle values around the unit circle. This is a more
efficient use of bits than a range of [0,2π] radians. Normalized angle format also enables wraparound
at 0/2π without additional detect and correct logic.

For example, representing the angle with 3 bits results in the following normalized values.

2 System Objects

2-162

Using the mapping described in “Modified CORDIC Algorithm” on page 1-129, the object normalizes
the angles across [0,π/4] and maps them to the correct octant at the end of the calculation.

Delay

The latency is NumIterations + 4 cycles from input to output. Each call to the object models one
clock cycle.

When you set NumIterationsSource to 'Auto', the number of iterations is one less than the input
word length and the latency is three more than the input word length. If the data type of the input is
double or single, the number of iterations is 16 and the latency is 20.

Note When you set the ScalingMethod property to 'Multipliers', the object latency increases
by four cycles.

Performance

Performance was measured for the default configuration, with output scaling disabled and
fixdt(1,16,12) input. When the generated HDL code is synthesized into a Xilinx ZC706
(XC7Z045FFG900-2) FPGA, the design achieves 350 MHz clock frequency. It uses the following
resources.

Resource Number Used
LUT 891
FFS 899
Xilinx LogiCORE DSP48 0
Block RAM (16K) 0
Critical path 2.792 ns

When you use a multiplier for the CORDIC gain scaling, the design uses one DSP block and has a
shorter critical path. The critical path difference is not significant at this number of bits, but as the

 dsphdl.ComplexToMagnitudeAngle

2-163

size of the data increases, the critical path of the CSD implementation rises faster than the critical
path of the multiplier.

Resource Number Used
LUT 808
FFS 956
Xilinx LogiCORE DSP48 1
Block RAM (16K) 0
Critical path 2.574 ns

Performance of the synthesized HDL code varies depending on your target and synthesis options.
When you use vector input, the resource usage is about VectorSize times the scalar resource usage.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this System object was named dsp.HDLComplexToMagnitudeAngle and was part
of the DSP System Toolbox product.

Option to use multiplier for scale factor

In previous releases, the System object implemented the CORDIC gain for hardware by using shift-
and-add logic. To use a multiplier, set the ScalingMethod property to 'Multipliers'. To use shift-
and-add logic, set this property to 'CSD'.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Blocks
Complex to Magnitude-Angle

Functions
cordicangle | cordiccart2pol | cordicabs | angle

2 System Objects

2-164

Introduced in R2014b

 dsphdl.ComplexToMagnitudeAngle

2-165

dsphdl.FIRRateConverter
Package: dsphdl

Upsample, filter, and downsample input signal

Description
The dsphdl.FIRRateConverter System object upsamples, filters, and downsamples input signals.
It is optimized for HDL code generation and operates on one sample of each channel at a time. The
object implements an efficient polyphase architecture to avoid unnecessary arithmetic operations and
high intermediate sample rates.

The object upsamples by an integer factor of L, applies an FIR filter, and downsamples by an integer
factor of M.

To resample and filter input data:

1 Create the dsphdl.FIRRateConverter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
HDLFIRRC = dsphdl.FIRRateConverter
HDLFIRRC = dsphdl.FIRRateConverter(L,M,num)
HDLFIRRC = dsphdl.FIRRateConverter(___ ,Name,Value)

Description

HDLFIRRC = dsphdl.FIRRateConverter returns a System object, HDLFIRRC, that resamples
each channel of the input. The object upsamples by an integer factor of L, applies an FIR filter, and
downsamples by an integer factor of M. The default L/M is 3/2.

HDLFIRRC = dsphdl.FIRRateConverter(L,M,num) sets the InterpolationFactor property
to L, the DecimationFactor property to M, and the Numerator property to num.

2 System Objects

2-166

HDLFIRRC = dsphdl.FIRRateConverter(___ ,Name,Value) sets properties using one or more
name-value pairs. Enclose each property name in single quotes. For example:
HDLFIRRC = dsphdl.FIRRateConverter(L,M,Num,'ReadyPort',true);

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

InterpolationFactor — Upsampling factor
3 (default) | positive integer scalar

Upsampling factor, L, specified as a positive integer.

DecimationFactor — Downsampling factor
2 (default) | positive integer scalar

Downsampling factor, M, specified as a positive integer scalar.

Numerator — FIR filter coefficients
firpm(70,[0 .28 .32 1],[1 1 0 0]) (default) | vector in descending powers of z-1

FIR filter coefficients, specified as a vector in descending powers of z-1.

You can generate filter coefficients by using the Signal Processing Toolbox filter design functions,
such as fir1. Design a lowpass filter with normalized cutoff frequency no greater than
min(1/L,1/M). The object initializes internal filter states to zero.

ReadyPort — Enable ready argument
false (default) | true

Enable ready output argument of the object. When enabled, the object returns a logical scalar value,
ready, when you call the object. When ready is 1 (true), the object is ready for a new input sample
the next time you call it.

RoundingMethod — Rounding mode used for fixed-point operations
'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Zero'

Rounding mode used for fixed-point operations. This property does not apply when the input is
single or double type. 'Simplest' mode is not supported.

OverflowAction — Overflow mode used for fixed-point operations
'Wrap' (default) | 'Saturate'

Overflow mode used for fixed-point operations. This property does not apply when the input is
single or double type.

CoefficientsDataType — Data type of the FIR filter coefficients
numerictype(1,16,16) (default) | numerictype(s,wl,fl)

 dsphdl.FIRRateConverter

2-167

Data type of the FIR filter coefficients, specified as a numerictype(s,wl,fl) object with
signedness, word length, and fractional length properties.

OutputDataType — Data type of the output data samples
'Same word length as input' (default) | numerictype(s,wl,fl) | 'Full precision'

Data type of the output data samples, specified as 'Same word length as input', 'Full
precision', or as a numerictype(s,wl,fl) object with signedness, word length, and
fractional length properties.

Usage

Syntax
[dataOut,validOut] = HDLFIRRC(dataIn,validIn)
[dataOut,validOut,ready] = HDLFIRRC(dataIn,validIn)

Description

[dataOut,validOut] = HDLFIRRC(dataIn,validIn) resamples dataIn according to the
InterpolationFactor (L) and DecimationFactor (M) properties. To avoid dropped samples
when using this syntax, apply new valid input samples, with validIn set to true, only every
ceil(L/M) calls to the object. The object sets validOut to true when dataOut is a new valid
sample.

[dataOut,validOut,ready] = HDLFIRRC(dataIn,validIn) resamples the input data and
returns ready to indicate whether the object can accept a new sample on the next call.

This syntax applies when you set the ReadyPort property to true. For example:

HDLFIRRC = dsphdl.FIRRateConverter(...,'ReadyPort',true);
...
[dataOut,validOut,ready] = rateConverter(dataIn,validIn);

Input Arguments

dataIn — Data input
scalar or row vector

Data input, specified as a scalar, or as a row vector where each element represents an independent
channel.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validIn — Indicates valid input data
scalar

Control signal that indicates if the input data is valid. When validIn is 1 (true), the object captures
the values from the dataIn argument. When validIn is 0 (false), the object ignores the values
from the dataIn argument.

You can apply a valid data sample every ceil(L/M) calls to the object. You can use the optional
ready output signal to indicate when the object can accept a new sample.

2 System Objects

2-168

Data Types: logical

Output Arguments

dataOut — Resampled and filtered data sample
scalar or row vector

Resampled and filtered data sample, returned as a scalar, or as a vector in which each element
represents an independent channel.

double and single data types are supported for simulation, but not for HDL code generation.
Data Types: fi | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | single | double

validOut — Indicates valid output data
scalar

Control signal that indicates if the output data is valid. When validOut is 1 (true), the object
returns valid data from the dataOut argument. When validOut is 0 (false), values from the
dataOut argument are not valid.
Data Types: logical

ready — Indicates object is ready for new input data
scalar

Control signal that indicates that the object is ready for new input data sample on the next cycle.
When ready is 1 (true), you can specify the data and valid inputs for the next time step. When
ready is 0 (false), the object ignores any input data in the next time step.
Dependencies

To enable this argument, set the ReadyPort property to true.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Downsample Signal

Convert a signal from 48 kHz to 32 kHz by using the dsphdl.FIRRateConverter System object™.

 dsphdl.FIRRateConverter

2-169

Define the sample rate and length of the input signal, and a 2 kHz cosine waveform. Set validIn =
true for every sample.

Fs = 48e3;
Ns = 100;
t = (0:Ns-1).'/Fs;
dataIn = cos(2*pi*2e3*t);
validIn = true(Ns,1);

Preallocate dataOut and validOut signals for faster simulation.

dataOut = zeros(Ns,1);
validOut = false(Ns,1);

Create the System object. Configure it to perform rate conversion by a factor of 2/3, using an
equiripple filter.

Numerator = firpm(70,[0 0.25 0.32 1],[1 1 0 0]);
firrc = dsphdl.FIRRateConverter(2,3,Numerator);

Call the System object to perform the rate conversion and obtain each output sample.

for k = 1:Ns
 [dataOut(k),validOut(k)] = firrc(dataIn(k),validIn(k));
end

Because the input sample rate is higher than the output sample rate, not every member of dataOut
is valid. Use validOut to extract the valid samples from dataOut.

y = dataOut(validOut);

View the input and output signals with the Logic Analyzer.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1/Fs,'TimeSpan',Ns/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')
la(dataIn,validIn,dataOut,validOut)

2 System Objects

2-170

Upsample Signal

Convert a signal from 40 MHz to 100 MHz by using the dsphdl.FIRRateConverter System
object™. To avoid overrunning the object as the signal is upsampled, control the input rate manually.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t),1,16,14);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Calculate how often the object can accept a new input sample.

L = 5;
M = 2;

 dsphdl.FIRRateConverter

2-171

stepsPerInput = ceil(L/M);
numSteps = stepsPerInput*Ns;

Generate dataIn and validIn based on how often the object can accept a new sample.

dataIn = zeros(numSteps,1,'like',x);
dataIn(1:stepsPerInput:end) = x;
validIn = false(numSteps,1);
validIn(1:stepsPerInput:end) = true;

Create the System object. Configure it to perform rate conversion using the specified factors and an
equiripple FIR filter.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsphdl.FIRRateConverter(L,M,Numerator);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')

Call the System object to perform the rate conversion and obtain each output sample. Call the Logic
Analyzer to add each sample to the waveform display.

for k = 1:numSteps
 [dataOut,validOut] = rateConverter(dataIn(k),validIn(k));
 la(dataIn(k),validIn(k),dataOut,validOut)
end

2 System Objects

2-172

Control Input Rate When Upsampling

Convert a signal from 40 MHz to 100 MHz by using the dsphdl.FIRRateConverter System
object™. Use the optional ready output signal to avoid overrunning the object as the data is
upsampled. The ready signal indicates the object can accept a new data sample on the next call to
the object.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform. Create a
SignalSource object to provide data samples on demand.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t),1,16,14);
inputSource = dsp.SignalSource(x);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Determine the number of calls to the object needed to convert Ns samples.

 dsphdl.FIRRateConverter

2-173

L = 5;
M = 2;
numSteps = floor(Ns*L/M);

Create the FIR rate converter System object. Configure it to perform rate conversion using the
specified factors and an equiripple FIR filter. Enable the optional ready output port.

Numerator = firpm(70,[0 0.15 0.25 1],[1 1 0 0]);
rateConverter = dsphdl.FIRRateConverter(L,M,Numerator,'ReadyPort',true);

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',5,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')
modifyDisplayChannel(la,5,'Name','ready')

Initialize the ready signal. The object is always ready for input data on the first call.

ready = true;

Call the System object to perform the rate conversion and obtain each output sample. Apply a new
input sample when the object indicates it is ready. Otherwise, set validIn to false.

for k = 1:numSteps
 if ready
 dataIn = inputSource();
 end
 validIn = ready;
 [dataOut,validOut,ready] = rateConverter(dataIn,validIn);
 la(dataIn,validIn,dataOut,validOut,ready)
end

2 System Objects

2-174

Design for HDL Code Generation from FIR Rate Converter

Create a rate conversion function targeted for HDL code generation, and a test bench to exercise it.
The function converts a signal from 40 MHz to 100 MHz. To avoid overrunning the object, the test
bench manually controls the input rate.

Define the sample rate and length of the input signal, and a fixed-point cosine waveform.

Fs = 40e6;
Ns = 50;
t = (0:Ns-1).'/Fs;
x = fi(cos(2*pi*1.2e6*t), 1, 16, 14);

Define the rate conversion parameters. Use an interpolation factor of 5 and a decimation factor of 2.
Calculate how often the object can accept a new data sample.

L = 5;
M = 2;

 dsphdl.FIRRateConverter

2-175

stepsPerInput = ceil(L/M);
numSteps = stepsPerInput*Ns;

Generate dataIn and validIn based on how often the object can accept a new sample.

dataIn = zeros(numSteps,1,'like',x);
dataIn(1:stepsPerInput:end) = x;
validIn = false(numSteps,1);
validIn(1:stepsPerInput:end) = true;

Create a Logic Analyzer to capture and view the input and output signals.

la = dsp.LogicAnalyzer('NumInputPorts',4,'SampleTime',1/Fs,'TimeSpan',numSteps/Fs);
modifyDisplayChannel(la,1,'Name','dataIn','Format','Analog','Height',8)
modifyDisplayChannel(la,2,'Name','validIn')
modifyDisplayChannel(la,3,'Name','dataOut','Format','Analog','Height',8)
modifyDisplayChannel(la,4,'Name','validOut')

Write a function that creates and calls the System object.

function [dataOut,validOut] = HDLFIRRC5_2(dataIn,validIn)
%HDLFIRRC5_2
% Processes one sample of data using the dsphdl.FIRRateConverter System
% object. dataIn is a fixed-point scalar value. validIn is a logical scalar value.
% You can generate HDL code from this function.

 persistent firrc5_2;
 if isempty(firrc5_2)
 Numerator = firpm(70,[0,.15,.25,1],[1,1,0,0]);
 firrc5_2 = dsphdl.FIRRateConverter(5,2,Numerator);
 end
 [dataOut,validOut] = firrc5_2(dataIn,validIn);
end

Resample the signal by calling the function for each data sample.

for k = 1:numSteps
 [dataOut,validOut] = HDLFIRRC5_2(dataIn(k),validIn(k));
 la(dataIn(k),validIn(k),dataOut,validOut)
end

2 System Objects

2-176

Algorithms
This object implements the algorithms described on the FIR Rate Converter block reference page.

Flow Control

The object accepts and returns control signal arguments for pacing the flow of samples. By default,
the object uses validIn and validOut control signals. You can also enable a ready output signal.

The ready output indicates that the object can accept a new input data sample on the next call to the
object. When L ≥ M, you can use the ready argument to achieve continuous output data samples. If
you apply a new input sample after each time object returns ready = true, each call to the object
returns a data output sample with validOut = true.

When you do not enable the ready argument, you can apply a valid data sample only every
ceil(L/M) calls to the object. For example:

• L/M = 4/5 — You can apply a new input sample on every call.

 dsphdl.FIRRateConverter

2-177

• L/M = 3/2 — You can apply a new input sample on every other call.

Version History
Moved to DSP HDL Toolbox from DSP System Toolbox
Behavior changed in R2022a

Before R2022a, this object was named dsp.HDLFIRRateConverter and was part of the DSP System
Toolbox product.

Remove request argument
Behavior changed in R2022a

In previous releases, the object provided an optional request argument. This argument is no longer
available.

Synchronous ready signal
Behavior changed in R2022a

In previous releases, the ready output signal was direct feedthrough without an output pipeline
register. This signal is now pipelined at the output of the object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

This System object supports C/C++ code generation for accelerating MATLAB simulations, and for
DPI component generation.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

double and single data types are supported for simulation, but not for HDL code generation.

To generate HDL code from predefined System objects, see “HDL Code Generation from Viterbi
Decoder System Object” (HDL Coder).

See Also
Blocks
FIR Rate Converter

Objects
dsp.FIRRateConverter

Introduced in R2015b

2 System Objects

2-178

getLatency
Package: dsphdl

Latency of FIR filter

Syntax
Y = getLatency(hdlobj)
Y = getLatency(hdlobj,inputType,[],isInputComplex,V)
Y = getLatency(hdlobj,coeffType,coeffPrototype,isInputComplex,V)

Description
Y = getLatency(hdlobj) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples.. Use this syntax when the
CoefficientsDataType is set to a numeric type, you are not using programmable coefficients, and
the input data is not complex or a vector.

Y = getLatency(hdlobj,inputType,[],isInputComplex,V) returns the latency, Y. The
latency depends on filter structure, filter coefficients, and input vector size. Use this syntax when you
are not using programmable coefficients. The these arguments may be optional, depending on the
object configuration.

• Use inputType when you set CoefficientsDataType property to 'Same word length as
input'. The latency can change with input data type because the object casts the coefficients to
the input data type, which can affect multiplier sharing for equal-absolute-value coefficients.

• Use isInputComplex when your input data is complex and you are using a partly-serial systolic
architecture. The latency changes when you have complex data and complex coefficients because
of the extra adder pipeline. When you specify isInputComplex, you must also give a placeholder
argument, [] for the unused third argument.

• Use V to specify the input vector size when your input is not scalar.

Y = getLatency(hdlobj,coeffType,coeffPrototype,isInputComplex,V) returns the
latency, Y. Use this syntax when you are using programmable coefficients. coeffType is the data
type of the input coefficients. The final two arguments may be optional, depending on the object
configuration.

• Use coeffPrototype to optimize the programmable filter for symmetric or antisymmetric
coefficients. The prototype specifies a pattern that all input coefficients must follow. Based on the
prototype, the object implements an optimized filter that shares the multipliers for symmetric
coefficients. If your input coefficients do not all conform to the same pattern, or to opt out of
multiplier optimization, you can omit this argument or specify the prototype as an empty vector,
[].

• Use isInputComplex when your input data is complex. When you specify isInputComplex, you
must also specify the coeffPrototype or a placeholder argument, [].

• Use V to specify the input vector size when your input is not scalar.

 getLatency

2-179

Examples

Explore Latency of FIR Object

The latency of the dsphdl.FIRFilter System object™ varies with filter structure, serialization
options, input vector size, and whether the coefficient values provide optimization opportunities. Use
the getLatency function to find the latency of a particular configuration. The latency is the number
of cycles between the first valid input and the first valid output.

Create a dsphdl.FIRFilter System object™ and request the latency. The default architecture is
fully parallel systolic. The default data type for the coefficients is 'Same word length as input'.
Therefore, when you call the getLatency object function, you must specify an input data type. The
object casts the coefficient values to the input data type, and then checks for symmetric coefficients.
This Numerator has 31 symmetric coefficients, so the object optimizes for the shared coefficients,
and implements 16 multipliers.

Numerator = firpm(30,[0 0.1 0.2 0.5]*2,[1 1 0 0]);
Input_type = numerictype(1,16,15); % object uses only the word length for coefficient type cast
hdlfir = dsphdl.FIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 23

For the same fully parallel filter with vector input, the latency is lower. Call getLatency with an
input vector size of four to check the latency for that case. The empty arguments are placeholders for
when you use programmable coefficients or complex input data.

L_syspv = getLatency(hdlfir,Input_type,[],[],4)

L_syspv = 17

Check the latency for a partly serial systolic implementation of the same filter. By default, the
SerializationOption property is 'Minimum number of cycles between valid input
samples', and so you must specify the serialization rule using the NumCycles property. To share
each multiplier between 8 coefficients, set the NumCycles to 8. The object then optimizes based on
the coefficient symmetry, so there are 16 unique coefficients shared 8 times each over 2 multipliers.
This serial filter implementation requires input samples that are valid every 8 cycles.

hdlfir = dsphdl.FIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic','NumCycles',8);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 19

Check the latency of a nonsymmetric fully parallel systolic filter. The Numerator has 31 coefficients.

Numerator = sinc(0.4*[-30:0]);
hdlfir = dsphdl.FIRFilter('Numerator',Numerator);
L_sysp = getLatency(hdlfir,Input_type)

L_sysp = 37

Check the latency of the same nonsymmetric filter implemented as a partly serial systolic filter. In this
case, specify the SerializationOption by the number of multipliers. The object implements a
filter that has 2 multipliers and requires 8 cycles between input samples.

2 System Objects

2-180

hdlfir = dsphdl.FIRFilter('Numerator',Numerator,'FilterStructure','Partly serial systolic',...
 'SerializationOption','Maximum number of multipliers','NumberOfMultipliers',2);
L_syss = getLatency(hdlfir,Input_type)

L_syss = 37

Check the latency of a fully parallel transposed architecture. The latency for this filter structure with
scalar input is always 6 cycles.

hdlfir = dsphdl.FIRFilter('Numerator',Numerator,'FilterStructure','Direct form transposed');
L_trans = getLatency(hdlfir,Input_type)

L_trans = 6

The latency of the transposed filter increases with input vector size.

L_transv4 = getLatency(hdlfir,Input_type,[],[],4)

L_transv4 = 9

L_transv8 = getLatency(hdlfir,Input_type,[],[],16)

L_transv8 = 11

Input Arguments
hdlobj — HDL-optimized filter System object
dsphdl.FIRFilter

HDL-optimized filter System object that you created and configured.

inputType — Input data type
numerictype object

Input data type, specified as a numerictype object. Call numerictype(s,w,f), where s is 1 for
signed and 0 for unsigned, w is the word length in bits, and f is the number of fractional bits.

If you specify [] for this argument, the object uses double data type to calculate the latency. The
result is equivalent to the fixed-point latency as long as the coefficient data type is large enough to
represent the coefficient values exactly.

Dependencies

This argument applies when the CoefficientsDataType is 'Same word length as input'.

coeffType — Input coefficients data type
numerictype object

Input coefficients data type, specified as a numerictype object. This argument applies when tyou
use programmable coefficients. Call numerictype(s,w,f), where s is 1 for signed and 0 for
unsigned, w is the word length in bits, and f is the number of fractional bits.

Dependencies

This argument applies when you set NumeratorSource to 'Input port (Parallel
interface)'.

 getLatency

2-181

coeffPrototype — Prototype filter coefficients
[] (default) | vector of numeric real values

Prototype filter coefficients, specified as a vector of numeric real values. The prototype specifies a
pattern that all input coefficients must follow. Based on the prototype, the object implements an
optimized filter that shares the multipliers for symmetric coefficients. If your input coefficients do not
all conform to the same pattern, or to opt out of multiplier optimization, specify the prototype as an
empty vector, [].

Coefficient optimizations affect the latency of the filter object.

Dependencies

This argument applies when you set NumeratorSource to 'Input port (Parallel
interface)'. When you have complex input data, but are not using programmable coefficients, set
this argument to [].
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

isInputComplex — Complexity of input data
false (default) | true

Set this argument to true if your input data is complex. You can omit this argument if your input data
is real. When your filter has complex input data and complex coefficients there is an additional adder
at the output of the filter that adds pipeline latency.
Data Types: logical

V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. Use this argument to request the latency of an
object similar to hdlobj, but with V-sample vector input. When you do not specify this argument, the
function assumes scalar input.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the filter object takes between the first valid input and the first valid output.
Each call to the object simulates one cycle. This latency assumes valid input data on every cycle.

See Also
Objects
dsphdl.FIRFilter

Introduced in R2017a

2 System Objects

2-182

getLatency
Package: dsphdl

Latency of FFT calculation

Syntax
Y = getLatency(hdlfft)
Y = getLatency(hdlfft,N)
Y = getLatency(hdlfft,N,V)

Description
Y = getLatency(hdlfft) returns the number of cycles, Y, that the object takes to calculate the
FFT of an input frame. The latency depends on the input vector size and the FFT length.

Y = getLatency(hdlfft,N) returns the number of cycles that an object would take to calculate
the FFT of an input frame, if it had FFT length N, and scalar input. This function does not change the
properties of the hdlfft.

Y = getLatency(hdlfft,N,V) returns the number of cycles that an object would take to calculate
the FFT of an input frame, if it had FFT length N, and vector input of size V. This function does not
change the properties of hdlfft.

Examples

Explore Latency of HDL FFT Object

The latency of the object varies with the FFT length and the vector size. Use the getLatency
function to find the latency of a particular configuration. The latency is the number of cycles between
the first valid input and the first valid output, assuming that the input is contiguous.

Create a new dsphdl.FFT object and request the latency.

hdlfft = dsphdl.FFT('FFTLength',512);
L512 = getLatency(hdlfft)

L512 = 599

Request hypothetical latency information about a similar object with a different FFT length. The
properties of the original object do not change.

L256 = getLatency(hdlfft,256)

L256 = 329

N = hdlfft.FFTLength

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

 getLatency

2-183

L256v8 = getLatency(hdlfft,256,8)

L256v8 = 93

Enable scaling at each stage of the FFT. The latency does not change.

hdlfft.Normalize = true;
L512n = getLatency(hdlfft)

L512n = 599

Request the same output order as the input order. The latency increases because the object must
collect the output before reordering.

hdlfft.BitReversedOutput = false;
L512r = getLatency(hdlfft)

L512r = 1078

Input Arguments
hdlfft — FFT System object
dsphdl.FFT | dsphdl.IFFT

FFT System object. See dsphdl.IFFT or dsphdl.FFT.

N — FFT length
integer power of 2 from 22 to 216

FFT length, specified as an integer power of 2 from 22 to 216. Use this argument to request the
latency of an object similar to hdlfft, but with FFT length N.

V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. The vector size cannot be greater than the FFT
length. Use this argument to request the latency of an object similar to hdlfft, but with V-sample
vector input. When you do not specify this argument, the function assumes scalar input.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the object takes to calculate the FFT of an input frame, returned as an integer.
The latency is the number of cycles between the first valid input and the first valid output, assuming
the input is contiguous. Each call to the object simulates one cycle.

See Also
Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer | dsphdl.IFFT | dsphdl.FFT

2 System Objects

2-184

Introduced in R2014a

 getLatency

2-185

getLatency
Package: dsphdl

Latency of CIC decimation filter

Syntax
Y = getLatency(hdlcic)
Y = getLatency(hdlcic,V)

Description
Y = getLatency(hdlcic) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples. The latency depends on the NumSections
and GainCorrection properties.

Y = getLatency(hdlcic,V) returns the latency, Y, between the first valid input sample and the
first valid output sample, assuming contiguous input samples and vector input of size V. The latency
depends on the vector input size, NumSections property, and the GainCorrection property.

Examples

Explore Latency of CIC Decimator Object

The latency of the dsphdl.CICDecimator System object™ varies depending on how many
integrator and comb sections your filter has, the input vector size, and whether you enable gain
correction. Use the getLatency function to find the latency of a particular filter configuration. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is continuously valid.

Create a dsphdl.CICDecimator System object and request the latency. The default System object
filter has two integrator and comb sections, and the gain correction is disabled.

hdlcic = dsphdl.CICDecimator

hdlcic =
 dsphdl.CICDecimator with properties:

 DecimationSource: 'Property'
 DecimationFactor: 2
 DifferentialDelay: 1
 NumSections: 2
 GainCorrection: false

 Show all properties

L_def = getLatency(hdlcic)

L_def = 5

2 System Objects

2-186

Modify the filter object so it has three integrator and comb sections. Check the resulting change in
latency.

hdlcic.NumSections = 3;
L_3sec = getLatency(hdlcic)

L_3sec = 6

Enable the gain correction on the filter object with vector input size 2. Check the resulting change in
latency.

hdlcic.GainCorrection = true;
vecSize = 2;
L_wgain = getLatency(hdlcic,vecSize)

L_wgain = 25

Input Arguments
hdlcic — CIC decimation filter System object
dsphdl.CICDecimator

CIC decimation filter System object that you created and configured. See dsphdl.CICDecimator.

V — Vector size
in range from 1 to 64

Vector size, specified in the range from 1 to 64. DecimationFactor property must be an integer
multiple of the input frame size. Use this argument to request the latency of an object similar to
hdlcic, but with V sample vector input. When you do not specify this argument, the function
assumes scalar input.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the CIC decimator object takes between the first valid input and the first valid
output. Each call to the object simulates one cycle. This latency assumes valid input data on every
cycle.

See Also
Objects
dsphdl.CICDecimator

Introduced in R2019b

 getLatency

2-187

getLatency
Package: dsphdl

Latency of CIC interpolation filter

Syntax
Y = getLatency(hdlcic)
Y = getLatency(hdlcic,V)

Description
Y = getLatency(hdlcic) returns the latency, Y, between the first valid input sample and the first
valid output sample, assuming contiguous input samples. The latency depends on the NumSections
property and whether GainCorrection is enabled.

Y = getLatency(hdlcic,V) returns the latency, Y, between the first valid input sample and the
first valid output sample, assuming contiguous input samples and vector input of size V. The latency
depends on the NumSections property, vector input size, and whether GainCorrection is enabled.

Examples

Input Arguments
hdlcic — CIC interpolation filter System object
dsphdl.CICInterpolator

CIC interpolation filter System object that you created and configured. See
dsphdl.CICInterpolator.

V — Vector size
in range from 1 to 64

Vector size, specified in the range from 1 to 64. Use this argument to request the latency of an object
similar to hdlcic, but with V sample vector input. When you do not specify this argument, the
function assumes scalar input.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the CIC interpolator object takes between the first valid input and the first valid
output. Each call to the object simulates one cycle. This latency assumes valid input data on every
cycle.

2 System Objects

2-188

See Also
Objects
dsphdl.CICInterpolator

Introduced in R2022a

 getLatency

2-189

getLatency
Package: dsphdl

Latency of FIR decimation filter

Syntax
Y = getLatency(hdlfird,inputType,isInputComplex,inputVecSize)
Y = getLatency(hdlfird)

Description
Y = getLatency(hdlfird,inputType,isInputComplex,inputVecSize) returns the latency,
Y, between the first valid input sample and the first valid output sample, assuming contiguous input
samples. The latency depends on filter structure and filter coefficients. The final two arguments may
be optional, depending on the object configuration.

• Use inputType when you set CoefficientsDataType property to 'Same word length as
input'. Otherwise, set it to [].

• Set isInputComplex to true when your input data is complex. The latency changes when you
have complex data and complex coefficients, because of the extra adder pipeline.

Y = getLatency(hdlfird) returns the latency, Y. Use this syntax when the
CoefficientsDataType is set to a numeric type, you are using scalar input, and the input data is
not complex.

Examples

Explore Latency of FIR Decimator Object

The latency of the dsphdl.FIRDecimator System object™ varies with filter architecture and input
vector size. Use the getLatency function to find the latency of a particular configuration. The
latency is the number of cycles between the first valid input and the first valid output.

Create a dsphdl.FIRDecimator System object™ and request the latency. The default filter is a
direct-form systolic architecture. The default data type for the coefficients is 'Same word length
as input'. Therefore, when you call the getLatency object function, you must specify an input
data type. The default filter has 36 coefficients. This example assumes the data input to your filter is
complex-valued. The default coefficients are real-valued. Complexity affects filter latency only when
you have complex-valued data and complex-valued coefficients.

inputType = numerictype(1,16,15); % object uses only the word length for coefficient type cast
complexInput = true;
downBy4 = dsphdl.FIRDecimator('DecimationFactor',4);
L_by4scalar = getLatency(downBy4,inputType,complexInput)

L_by4scalar = 44

Check the latency for the same filter with vector input.

2 System Objects

2-190

vectorSize = 2;
L_by4Vec2 = getLatency(downBy4,inputType,complexInput,vectorSize)

L_by4Vec2 = 28

Check the latency of a transposed architecture.

downBy4.FilterStructure = 'Direct form transposed';
L_by4trans = getLatency(downBy4,inputType,complexInput)

L_by4trans = 11

Check the latency for the transposed filter with vector input.

vectorSize = 4;
L_by4transVec4 = getLatency(downBy4,inputType,complexInput,vectorSize)

L_by4transVec4 = 9

Input Arguments
hdlfird — HDL-optimized FIR filter System object
dsphdl.FIRDecimator

HDL-optimized FIR decimation filter System object that you created and configured. See
dsphdl.FIRDecimator.

inputType — Input data type
numerictype object

Input data type, specified as a numerictype object. Call numerictype(s,w,f), where s is 1 for
signed and 0 for unsigned, w is the word length in bits, and f is the number of fractional bits.

If you specify [] for this argument, the object uses double data type to calculate the latency. The
result is equivalent to the fixed-point latency as long as the coefficient data type is large enough to
represent the coefficient values exactly.

Dependencies

This argument applies when the CoefficientsDataType is 'Same word length as input'.

isInputComplex — Complexity of input data
false (default) | true

Set this argument to true if your input data is complex. You can omit this argument if your input data
is real. When your filter has complex input data and complex coefficients there is an additional adder
at the output of the filter that adds pipeline latency.
Data Types: logical

inputVecSize — Vector size
integer from 1 to 64

Vector size, specified as an integer from 1 to 64. When you do not specify this argument, the function
assumes scalar input.

 getLatency

2-191

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the filter object takes between the first valid input and the first valid output.
Each call to the object simulates one cycle. This latency assumes valid input data on every cycle.

See Also
Objects
dsphdl.FIRDecimator

Introduced in R2020b

2 System Objects

2-192

getLatency
Package: dsphdl

Latency of channelizer calculation

Syntax
Y = getLatency(channelizer)
Y = getLatency(channelizer,N)
Y = getLatency(channelizer,N,V)
Y = getLatency(channelizer,N,V,isInputType)

Description
Y = getLatency(channelizer) returns the number of cycles, Y, that the object takes to
channelize an input frame. The latency depends on the input vector size and the FFT length. The
channelizer filter coefficients does not affect the latency.

Y = getLatency(channelizer,N) returns the number of cycles that an object would take to
channelize an input frame, if it had FFT length N, and scalar input. This function does not change the
properties of the channelizer.

Y = getLatency(channelizer,N,V) returns the number of cycles that an object would take to
channelize an input frame, if it had FFT length N, and vector input of size V. This function does not
change the properties of channelizer.

Y = getLatency(channelizer,N,V,isInputType) returns the number of cycles that an object
would take to channelize an input frame, if it had FFT length N, vector input of size V, and
isInputType that indicates the complexity of the input when the filter coefficients of channelizer
are complex. This function does not change the properties of channelizer.

Examples

Explore Latency of Channelizer Object

The latency of the dsphdl.Channelizer object varies with the FFT length, filter structure, vector
size, and input type. Use the getLatency function to find the latency of a particular configuration.
The latency is measured as the number of cycles between the first valid input and the first valid
output, assuming that the input is contiguous. The number of filter coefficients does not affect the
latency. Setting the output size equal to the input size reduces the latency because the samples are
not saved and reordered.

Create a dsphdl.Channelizer object with filter structure set to direct form transposed and request
the latency.

channelize = dsphdl.Channelizer('NumFrequencyBands',512, 'FilterStructure','Direct form transposed');
L512 = getLatency(channelize)

L512 = 1118

 getLatency

2-193

Request hypothetical latency information about a similar object with a different number of frequency
bands (FFT length). The properties of the original object do not change.

L256 = getLatency(channelize,256)

L256 = 592

N = channelize.NumFrequencyBands

N = 512

Request hypothetical latency information of a similar object that accepts eight-sample vector input.

L256v8 = getLatency(channelize,256,8)

L256v8 = 132

Enable scaling at each stage of the FFT. The latency does not change.

channelize.Normalize = true;
L512n = getLatency(channelize)

L512n = 1118

Request the same output size and order as the input data. The latency decreases because the object
does not need to store and reorder the data before output. The default input size is scalar.

channelize.OutputSize = 'Same as input size';
L512r = getLatency(channelize)

L512r = 1084

Check the latency of a vector input implementation where the input and output are the same size.
Specify the current value of the FFT length and a vector size of 8 samples. The latency decreases
because the object computes results in parallel when the input is a vector.

L512rv8 = getLatency(channelize,channelize.NumFrequencyBands,8)

L512rv8 = 218

Check the latency of a vector input implementation where the input type is complex. Specify the
current value of the FFT length and a vector size of 16 samples.

L512rv16i = getLatency(channelize,channelize.NumFrequencyBands,16,true)

L512rv16i = 152

Input Arguments
channelizer — Channelizer System object
dsphdl.Channelizer

Channelizer System object that you created and configured. See dsphdl.Channelizer.

N — Number of frequency bands (FFT length)
integer power of 2 from 22 to 216

Number of frequency bands (FFT length), specified as an integer power of 2 from 22 to 216.

2 System Objects

2-194

V — Vector size
power of 2 from 1 to 64

Vector size, specified as a power of 2 from 1 to 64. The vector size cannot be greater than the FFT
length. When you do not specify this argument, the function assumes scalar input.

isInputType — Indicator of input data complexity
logical scalar

Indicator of input data whether it is complex or not.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the object takes to channelize an input frame, returned as an integer. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is contiguous. Each call to the object simulates one cycle.

See Also
Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer | dsphdl.IFFT | dsphdl.FFT

Introduced in R2017a

 getLatency

2-195

getLatency
Package: dsphdl

Latency of channel synthesizer calculation

Syntax
Y = getLatency(channelsynthesizer)
Y = getLatency(channelsynthesizer,N)

Description
Y = getLatency(channelsynthesizer) returns the number of cycles, Y that the object would
take to synthesize an input frame. The filter coefficients do not affect the latency. This function does
not change the properties of the channelsynthesizer.

Y = getLatency(channelsynthesizer,N) returns the number of cycles that an object would
take to synthesize an input frame. The latency depends on the filter structure and the IFFT length (N).
The filter coefficients do not affect the latency. This function does not change the properties of the
channelsynthesizer.

Examples

Explore Latency of Channel Synthesizer Object

The latency of the dsphdl.ChannelSynthesizer object varies with the IFFT length and filter
structure.

Create a dsphdl.ChannelSynthesizer object with a direct form transposed filter structure and 16
frequency bands, and then calculate the latency.

synthesizerDT = dsphdl.ChannelSynthesizer('FilterStructure','Direct form transposed');
latencyDT = getLatency(synthesizerDT,16)

latencyDT = 20

Calculate the latency information for dsphdl.ChannelSynthesizer object with a direct form
systolic filter structure and and 8 frequency bands.

synthesizerDS = dsphdl.ChannelSynthesizer('FilterStructure','Direct form systolic');
latencyDS = getLatency(synthesizerDS,8)

latencyDS = 21

Enable scaling at each stage of the IFFT. The latency does not change.

synthesizerDT.Normalize = true;
latencyDTn = getLatency(synthesizerDT,16)

latencyDTn = 20

2 System Objects

2-196

Input Arguments
channelsynthesizer — Channel synthesizer System object
dsphdl.ChannelSynthesizer

Channel synthesizer System object that you created and configured. See
dsphdl.ChannelSynthesizer.

N — Number of frequency bands (IFFT length)
integer power of 2 from 22 to 26

Number of frequency bands (IFFT length), specified as an integer power of 2 from 22 to 26.

Output Arguments
Y — Cycles of latency
integer

Cycles of latency that the object takes to synthesize the input frame, returned as an integer. The
latency is the number of cycles between the first valid input and the first valid output, assuming the
input is contiguous. Each call to the object simulates one cycle.

See Also
Objects
dsphdl.Channelizer | dsphdl.ChannelSynthesizer | dsphdl.IFFT | dsphdl.FFT

Introduced in R2022a

 getLatency

2-197

	Blocks
	CIC Interpolator
	CIC Decimator
	Discrete FIR Filter
	Farrow Rate Converter
	NCO
	Channel Synthesizer
	FFT
	IFFT
	Channelizer
	FIR Decimator
	FIR Interpolator
	FIR Rate Converter
	FIR Rate Converter (Obsolete)
	Complex to Magnitude-Angle
	Biquad Filter

	System Objects
	dsphdl.CICInterpolator
	dsphdl.CICDecimator
	dsphdl.FIRFilter
	dsphdl.FarrowRateConverter
	dsphdl.NCO
	dsphdl.ChannelSynthesizer
	dsphdl.FFT
	dsphdl.IFFT
	dsphdl.Channelizer
	dsphdl.FIRDecimator
	dsphdl.FIRInterpolator
	dsphdl.BiquadFilter
	dsphdl.ComplexToMagnitudeAngle
	dsphdl.FIRRateConverter
	getLatency
	getLatency
	getLatency
	getLatency
	getLatency
	getLatency
	getLatency

